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Abstract:  

This paper examines the medium and long-term human capital consequences of in-utero exposure to 

agricultural fires in rural China. Leveraging data from a nationally representative household sample, we 

exploit exogenous variations in birth month, fire intensity, and wind direction to identify the causal effect of 

fetal exposure to fire. We show that in-utero exposure to agricultural fires significantly reduces individuals’ 

health, cognitive, and non-cognitive performance in adolescence. Tracking these cohorts into their adulthood, 

we find that fire exposure decreases education years and earnings. Besides the transmission of adverse con-

ditions in early life, a key mechanism driving the persistent effect of fetal exposure is that liquidity-con-

strained households reinforce the negative impacts by reallocating resources (e.g., health and education in-

vestment) away from exposed children. Using the phased rollout of China’s New Cooperative Medical 

Scheme (NCMS) as a quasi-experiment, we find that health insurance coverage can largely offset the dele-

terious effects of agricultural fire exposure by easing financial constraints and promoting parental invest-

ments. Our findings underscore the disproportionate cost of pollution on vulnerable rural families and have 

significant policy implications for how to mitigate the adverse effects of pollution exposure.  
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1. Introduction 

Agricultural fire is a prevalent practice in developing countries for disposing of crop residues after 

harvest. While it benefits agricultural production by reducing the cost of residue disposal and eliminating 

potential pests and diseases, it also contributes significantly to seasonal air pollution, leading to severe health 

and cognitive consequences (Rangel and Vogl 2019; Graff Zivin et al. 2020; He, Liu, and Zhou 2020; Lai et 

al. 2022; Pullabhotla and Souza 2022; Ayesh 2023; Du et al. 2024; Garg, Jagnani, and Pullabhotla 2024). 

This issue is particularly salient for infants, who are more vulnerable and susceptible to environmental pol-

lutants (Currie and Neidell 2005; Currie et al. 2009; Almond and Currie 2011; Almond, Edlund, and Palme 

2009; Currie et al. 2014), and the potential costs of pollution exposure (e.g., cognitive deficits, chronic dis-

eases) may not become apparent until years after birth, leading policymakers to underestimate their long-

term effects. Moreover, due to lower income and weaker health infrastructure in the rural counterparts of 

developing countries, fetal exposure to agricultural fires may further affect the decision of intra-household 

resource reallocation (Yi et al. 2015), which could even exacerbate the potential costs of pollution exposure.  

In this paper, we examine the long-term effects of in-utero exposure to agricultural fires on adolescent 

and adult outcomes in rural China and explore potential mechanisms. To carry out the empirical analysis, we 

face two empirical challenges. First, since valid measures of agricultural fires (e.g., satellite observations) 

are only available after the 2000s, to estimate the long-term effects of fetal agricultural fire exposure for 

individuals born before the 2000s, we need effective proxy measures for agricultural fires. Second, to shed 

light on the long-term effects of pollution exposure, as well as potential mechanisms (e.g., intra-household 

resource allocation), we need detailed data that records individuals’ health and non-health outcomes (e.g., 

cognitive and labor market performance) and parental investment.  

To address the first challenge, we resort to exogenous agricultural potential yield and borrow insights 

from previous studies to construct measures for upwind/downwind potential yield (e.g., Rangel and Vogl 

2019; He, Liu, and Zhou 2020; Lai et al. 2022). We provide a set of verification tests in Section 4 to show 

that the upwind/downwind potential yield measures are valid proxies for agricultural fire intensity and air 

pollution (e.g., PM2.5) across different counties. To address the second challenge, we exploit a nationally 

representative household dataset, the China Family Panel Studies (CFPS), which records detailed health and 

(non-)cognitive measures for adolescents and the corresponding parental investment (e.g., health and edu-

cation expenditure). The CFPS also tracks adolescents into adulthood, allowing for an examination of the 

labor market impacts of in-utero agricultural fire exposure. In addition, CFPS records retrospective questions 

on early-life conditions (e.g., health at birth and age 1), which enables us to investigate how in-utero agri-

cultural fire exposure affects early-life outcomes.  

We begin by estimating the effects of in-utero agricultural fire exposure on the health, cognitive, and 

non-cognitive outcomes of adolescents. Our identification hinges on three sources of plausibly exogenous 

variations. The first is variations in individuals’ birth month, which we exploit to determine during which 

trimester the individual is exposed to agricultural fires. The second is variations in fire intensity across dif-

ferent counties, proxied by agricultural potential yields. We augment our identification by including a third 

variation in wind direction, which allows us to implement an upwind-downwind specification that eliminates 

potential income effects that may confound our identification. Our results suggest that in-utero agricultural 

fire exposure can have significant deleterious effects on adolescent development. Specifically, we find that 

agricultural fire exposure leads to worsened health outcomes (measured by a composite index combining 

information on self-reported health, hospitalization, and chronic respiratory disease), cognitive outcomes 

(measured by standardized word test scores), and non-cognitive outcomes. Additionally, we show that the 

estimated effects are more pronounced if individuals are exposed to agricultural fires during the first and 
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third trimesters, which is in line with previous literature in economics and epidemiology (Glinianaia et al. 

2004; Šrám et al. 2005; Currie and Neidell 2005; Kannan et al. 2006; Currie et al. 2014; Rangel and Vogl 

2019). The effects are stronger for boys than girls, possibly because male fetuses are more susceptible to in-

utero pollution exposure. We find no effects on urban adolescents.  

Due to the panel structure of the CFPS, we are able to track the same adolescents into their adulthood, 

which allows us to explore the effects of in-utero agricultural fire exposure on educational and labor market 

outcomes. Our findings reveal that fire exposure can significantly lower the number of years of education. 

Conditional on entering the labor market, we show that exposed cohorts earn lower annual wages and are 

more likely to work in the agricultural sector.  

We then proceed to explore the potential mechanisms through which in-utero exposure to agricultural 

fires leads to persistent effects. As suggested by Currie et al. (2014), there are at least two channels through 

which early-life exposure to air pollution translates into long-term consequences. The first is the direct chan-

nel through the transmission of adverse early life outcomes, and the second is the indirect channel through 

intra-household resource reallocation, i.e., parental investment. While the sign of the first channel is theoret-

ically unambiguous, parental investment in responding to the adverse health shocks could be either reinforc-

ing or compensating.1 To shed light on these potential mechanisms, we first examine how agricultural fire 

exposure worsens early-life health conditions. We find consistent evidence that in-utero agricultural fire ex-

posure increases the number of illnesses at age 1, and leads to shortened gestation months and lower birth 

weight.  

Next, we investigate how parents respond to negative health shocks induced by agricultural fire expo-

sure. We show that parents reduce both health and education investment in children who are exposed to 

agricultural fires, consistent with reinforcement behavior. Exploring the potential heterogeneity, we find that 

the reduction in parental investments is primarily driven by mothers with lower education levels and house-

holds with lower income. This suggests that liquidity constraints may be an important driver that explains 

why rural households reduce their investment in exposed children. Moreover, our results also imply that the 

consequences of agricultural fire exposure are unevenly distributed across rural households, with more dis-

advantaged households being more severely affected.  

Given that agricultural fires can have significant adverse long-term effects on rural adolescents and that 

parental responses could even reinforce such negative impacts, a critical policy question is what measures 

can be taken to mitigate the adverse pollution effects. In the last part of our empirics, we investigate the 

effects of the provision of public health insurance on mitigating the effects of agricultural fire exposure. To 

this end, we leverage the sequential rollout of the New Cooperative Medical Scheme (NCMS) in rural China 

(see Section 2.3 for a more detailed description of the program), which is the largest insurance program in 

history (Gruber, Lin, and Yi 2023). The NCMS program is financed by low individual contributions and 

high government payments and offers generous subsidies for inpatient expenses. We follow Huang and Liu 

(2023) and denote individuals who were less than 5 years old when the NCMS program was implemented 

as those exposed to the policy. We find that, for individuals who are exposed to the NCMS program, in-utero 

exposure to agricultural fires has no significant effect on adolescent outcomes, which suggests a mitigating 

role of public health insurance coverage. Moreover, we provide evidence that the mitigating role of the 

NCMS program is mainly through increasing parental investments, especially for those more disadvantaged 

households, and find no evidence that NCMS exposure can mitigate adverse health outcomes at birth.  

This paper speaks to three strands of literature in environmental and health economics. First, we add to 

 
1 The compensatory channel suggests that family would invest more on children who are more exposed to pollution, 

while the reinforcing channel suggests that family would invest more on children who are less exposed to pollution, as the 

return to human capital is higher.  
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the burgeoning literature that examines the consequences of air pollution from agricultural fires (Rangel and 

Vogl 2019; Graff Zivin et al. 2020; He, Liu, and Zhou 2020; Lai et al. 2022; Pullabhotla and Souza 2022; 

Ayesh 2023; Du et al. 2024; Garg, Jagnani, and Pullabhotla 2024). While much of the existing research 

focuses on the contemporaneous effects of exposure to agricultural fires and a wide range of health and 

behavioral outcomes (see more detailed discussion in Section 2.2), our paper is among the first that system-

atically investigate the long-term consequences of in-utero exposure to agricultural fires. One related paper 

is Carneiro, Cole, and Strobl (2024), which examines the effects of in-utero exposure to agricultural fires on 

students’ test scores. Our paper differs in providing more comprehensive evidence on how in-utero agricul-

tural fire exposure leads to health and (non-)cognitive consequences in adolescence and labor market out-

comes in adulthood, and shedding light on the potential mechanisms. More broadly, we contribute to the 

literature that estimates the long-term effects of early-life pollution exposure (Chen et al. 2013; Isen, Rossin-

Slater, and Walker 2017; Ebenstein et al. 2017; Anderson 2020; Barreca, Neidell, and Sanders 2021). While 

most of the existing studies focus on the effects of air pollution on urban residents, there is a lack of research 

that estimates the long-term consequences of pollution exposure for the rural sample, who are more vulner-

able to pollution exposure due to income volatility and limited access to health facilities.  

Second, we contribute to the literature by empirically examining the mechanisms through which in -

utero exposure to air pollution can have long-term consequences (Currie et al. 2014). While there is a vast 

strand of literature that estimates the long-term consequences of early-life/prenatal pollution exposure (e.g., 

Bharadwaj et al. 2017; Isen, Rossin-Slater, and Walker 2017; Black et al. 2019; Rosales-Rueda and Triyana 

2019; Von Hinke and Sørensen 2023; Ferro et al. 2024; Chen 2025), surprisingly, only a scant amount of 

literature investigates the potential mechanisms. We add to this broad literature by providing the first empir-

ical evidence on how prenatal exposure to air pollution affects the human capital investment in rural China. 

Our finding reveals that rural households make reinforcing investments in their children, which suggests an 

amplification of the effects of in-utero exposure to air pollution. In doing so, we also echo the emerging 

literature on how early life shocks affect intra-household human capital investment and formation (Yi et al. 

2015; Adhvaryu and Nyshadham 2016; Bharadwaj, Eberhard, and Neilson 2018). While the empirical evi-

dence is mixed on how families make compensatory or reinforcing investments in response to early life 

shocks, our finding suggests that the liquidity constraints and limited access to health insurance may be the 

reasons that explain why rural households make reinforcing investments in children exposed to prenatal air 

pollution.2  

Lastly, we contribute to the literature that investigates the impacts of public health insurance, more 

specifically, the provision of the New Cooperative Medical Scheme (NCMS) in rural China (Lei and Lin 

2009; Wagstaff et al. 2009; Chen and Jin 2012; Cheng et al. 2015; Gruber, Lin, and Yi 2023; Huang and Liu 

2023; Wang, Wu, and Yuan 2024). While the majority of the literature investigates the potential benefits of 

health insurance coverage (e.g., increased consumption, education, and reduced mortality), our paper high-

lights additional benefits of how the coverage of health insurance can mitigate the adverse effects of in-utero 

air pollution exposure. In doing so, we add to the recent literature that examines how later intervention can 

mitigate the negative effects of early life shocks (Billings and Schnepel 2018; Duque, Rosales-Rueda, and 

Sanchez Torres 2019). Our finding suggests that the provision of health insurance can increase parental 

 
2 Focusing on China, Yi et al. (2015) show that parents act as a net equalizer in which they increase health investment 

and reduce education investment to children who suffer from negative early health shocks, while our finding implies that for 

children who exposed to prenatal air pollution, family reduces both health and education investment, possibly because fatal 

pollution exposure can have both health and cognitive consequences. Using data from Chile, Bharadwaj, Eberhard, and 

Neilson (2018) find that parents make compensatory investment regarding initial health. Leveraging large-scale iodine sup-

plementation program in Tanzania, Adhvaryu and Nyshadham (2016) indicate that children with higher program exposure 

receive more parental investment, which favors the compensatory mechanism.  
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investment, which largely mitigates the deleterious effects of in-utero pollution exposure.  

2. Background and Literature 

2.1 Agricultural fires and air pollution  

In rural China, fire has long been a widely used technology for clearing the fields since ancient times. 

The earliest written record of the use of agricultural fires, found in the “Fundamental Arts for the People's 

Welfare” (QIMIN Yaoshu in Chinese), dates back to the North Wei dynasty (386-534 AD). It is also com-

monly believed that the ashes from burning the crop residues can fertilize the soil (Hays et al. 2005), while 

the heat generated during the burning process can eliminate the hidden pests (Graff Zivin et al. 2020; He, 

Liu, and Zhou 2020; Nian 2023). Following the abolition of the People's Commune in the 1980s, grain 

production in China increased rapidly (Lin 1992), and the country has since become the largest producer of 

both grain and straw globally. Wheat, maize, and rice are the primary sources of straw, contributing to over 

80% of the total straw production in China.3  

The rapid increase in grain production has, however, created significant challenges in the disposal and 

management of crop residues. Due to the benefits of crop burning for agricultural cultivation and production, 

approximately 31% of crop residues are burned in situ (Graff Zivin et al. 2020). However, the burning of 

these residues generates considerable particulate matter, particularly PM2.5, contributing to elevated air pol-

lution (Rangel and Vogl 2019; He, Liu, and Zhou 2020; Garg, Jagnani, and Pullabhotla 2024).4 For example, 

He, Liu, and Zhou (2020) document that 10 additional agricultural fires will lead to a 4.79 µg/m3 increase in 

monthly PM2.5. Shi et al. (2014) show that in agricultural production areas during the harvest season, the 

share of fine particulate matter emitted from agricultural fires exceeds more than 50% of the total regional 

emissions and that pollutant emissions from burning significantly increased the occurrence of regional haze. 

Despite regulations on crop burning being introduced as early as the 1990s, their enforcement has remained 

ineffective due to the high costs of monitoring and enforcement (Nian 2023). It was not until 2013 that the 

Chinese government launched a new round of campaign-style regulation that aimed to comprehensively 

reduce the number of agricultural fires (Wang, Wang, and Yin 2022; Cao and Ma 2023).  

Besides China, the burning of agricultural biomass is a common phenomenon in other developing coun-

tries, especially those growing staple foods (e.g., India, Thailand, Vietnam, and the Philippines). It is esti-

mated that every year, after the rice harvest, about 2.5 million farmers in northwestern India burn the re-

maining straw in situ (Keil et al. 2021). And study by Kim Oanh et al. (2018) indicates that the air pollution 

caused by agricultural fires in Vietnam and the Philippines has already exceeded the pollution caused by 

forest fires.  

Several attributes of agricultural fires make them an intriguing source of air pollution and have drawn 

growing attention in the literature. First, unlike previous studies that exploit either natural or quasi-experi-

ments as the source of variation to examine the effects of air pollution (e.g., Chay and Greenstone 2003; 

Almond, Edlund, and Palme 2009; Sanders 2012; Chen et al. 2013; Isen, Rossin-Slater, and Walker 2017; 

Gong et al. 2023), the burning of agricultural biomass is a seasonal and regular activity amid the production 

of agricultural goods (e.g., wheat, maize, and rice). Moreover, the pollution generated from agricultural fires 

is relatively lower than traditional sources of industrial pollution (Rangel and Vogl 2019). As numerous 

 
3 According to the World Bank data, China's agricultural value added accounted for 31.1 percent of the world's total 

agricultural value added in 2021. See https://www.gov.cn/xinwen/2022-11/02/content_5723319.htm.  
4 It is estimated that air pollution from agricultural burning involves around 30 million people globally (Landrigan et 

al. 2018).  

https://www.gov.cn/xinwen/2022-11/02/content_5723319.htm
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studies have indicated that even pollution well below the safety standards can have detrimental effects on 

human health (Janet Currie et al. 2009; Aizer et al. 2018), it is thus important to understand the effects and 

magnitudes of such seasonal and (relatively) low-level pollution. Second, while the literature provides sig-

nificant insights into the adverse effects of industrial air pollution (e.g., Ebenstein 2012; Greenstone and 

Hanna 2014; Hanna and Oliva 2015; Anderson 2020; Bombardini and Li 2020; Barreca, Neidell, and Sanders 

2021), much less is known about the potential costs of agricultural air pollution. This is, nevertheless an 

important issue given that rural populations, often facing pervasive poverty and limited access to public 

health insurance, may be more vulnerable to the deleterious effects of pollution.  

2.2 Fire-induced pollution and related consequences 

There is now a burgeoning strand of literature that investigates the broad impacts of fire-induced pol-

lution. Rangel and Vogl (2019) is the first paper in economics that studies the effects of agricultural fires and 

shows that in-utero exposure to agricultural fires increases infant mortality in Brazil. Carneiro, Cole, and 

Strobl (2024) extend the results from Rangel and Vogl (2019) and show that in-utero exposure to agricultural 

fires reduces adolescents’ cognitive ability. Focusing on China, He, Liu, and Zhou (2020) investigate the 

impacts of short-term exposure to agricultural fires and elderly mortality, while Lai et al. (2022) find that air 

pollution from straw burning significantly decreases the cognitive function of the elderly. Graff Zivin et al. 

(2020) studied the effects of agricultural fires that occurred during high-stakes exams on students’ perfor-

mance and find that temporary exposure to agricultural fires significantly decreases students’ scores. Using 

exogenous variation from the construction of rural roads in India, Garg, Jagnani, and Pullabhotla (2024) find 

that rural roads increase labor exit and result in more crop fires, which in turn lead to an increase in infant 

mortality in the downwind region. Using detailed data from blood pressure testing, Pullabhotla and Souza 

(2022) find that the number of upwind fires observed one day before blood pressure testing significantly 

increases the risk of hypertension. Ayesh (2023) studies the impacts of burning agricultural biomass on crime 

activities and finds that it increases all types of crimes, particularly violent crimes.  

Besides agricultural fires, there are several studies that investigate the impacts of other types of fires 

(e.g., forest fires). To name a few, Jayachandran (2009) studies the short-term impacts of exposure to Indo-

nesia’s forest fires and finds that prenatal exposure to air pollution caused by wildfires increases child mor-

tality. Rosales-Rueda and Triyana (2019) investigate the persistent consequences of the 1997 Indonesian 

forest fire and find that it leads to significant increases in the presence of stunts and decreases in lung capacity. 

Borgschulte, Molitor, and Zou (2024) and Coulombe and Rao (2025) investigate the impacts of wildfires on 

labor market outcomes and find that exposure to wildfires decreases local employment growth and reduces 

quarterly earnings. Du et al. (2024) study the effects of transboundary vegetation fire in Southeast Asian 

countries on expressed sentiment and find that increases in upwind fire decrease sentiment scores.  

2.3 The New Cooperative Medical Scheme (NCMS) 

The introduction of the New Cooperative Medical Scheme (NCMS) is a great progress of the health 

system in rural China (Wang, Wu, and Yuan 2024). Before the introduction of NCMS in the 2000s, the vast 

population in rural China had very limited access to health insurance (either private or public), and was 

vulnerable to health shocks (Hu et al. 2008; Yip and Hsiao 2008). Typically, more than 90 percent of rural 

residents had no health insurance throughout the 1990s, with a significant number of households being 

pushed back into poverty due to unaffordable out-of-pocket payments for health care (Huang and Liu 2023).  

The NCMS program was introduced in 2003 and progressively rolled out at the county level. Following 

guidelines set by the central government, each province is required to select at least two to three pilot counties 

in the first year of NCMS introduction (Gruber, Lin, and Yi 2023). Over time, additional counties were 
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gradually incorporated, with the goal of achieving nationwide coverage by 2010. In Appendix Figure A1, 

we show the geographic distribution of the timing of NCMS adoption across different counties. It is evident 

that, following the vast expansion between 2003 and 2008, nearly all counties have adopted the NCMS. The 

enrollment rate amounted to 78.6% during the first three years of NCMS expansion (You and Kobayashi 

2009). Within six years after its initial launch, the NCMS had expanded to cover over 800 million rural 

residents, making it the largest health insurance program in modern history (Gruber, Lin, and Yi 2023).  

The NCMS program is eligible for only households with local agricultural Hukou.5 Though voluntary, 

the enrollment rate is particularly high since it is financed by low individual contributions and high govern-

ment payments, which are shared between local and central governments (Gruber, Lin, and Yi 2023; Huang 

and Liu 2023).6 Though being a national policy, the design and implementation of the NCMS program are 

characterized by great discretion at the local county level. In particular, while all NCMS programs cover 

inpatient medical care, enrolled counties differ in their coverage for outpatient care. For example, while all 

counties that adopt the NCMS program offer a 50% subsidy for inpatient expenses, only approximately 80% 

of counties cover both inpatient and outpatient expenses (Lei and Lin 2009; Wagstaff et al. 2009; Gruber, 

Lin, and Yi 2023).7 In addition, the coverage of outpatient care is also heterogeneous across counties. Spe-

cifically, within counties that cover outpatient expenses, 25% of counties provide direct payment for outpa-

tient care, while the remaining 75% of counties set up mandatory medical saving accounts that would be 

used to pay for outpatient care (Burns and Liu 2017). The mandatory saving account is contributed to by 

both individuals and the government, with the sharing rule determined by local governments (Milcent 2018). 

Since 2007, more counties have started to incorporate outpatient expenses into the program (Huang and Liu 

2023).  

There is a modest but emerging strand of literature that investigates the broad impact of the NCMS 

program (Lei and Lin 2009; Wagstaff et al. 2009; Chen and Jin 2012; Cheng et al. 2015; Gruber, Lin, and Yi 

2023; Huang and Liu 2023; Wang, Wu, and Yuan 2024). For example, Chen and Jin (2012) show that the 

introduction of the NCMS program has significantly improved the school enrollment of six-year-olds, while 

having limited impacts on child and maternal mortality. Exploiting a cohort difference-in-difference design, 

Huang and Liu (2023) document that early-life exposure to NCMS has significantly improved both the health 

and cognitive outcomes of rural adolescents. Focusing on the elderly, Cheng et al. (2015) find that the NCMS 

improved daily living activities and cognitive functions, while Gruber, Lin, and Yi (2023) indicate a sub-

stantial reduction in elderly mortality. We link the adoption of NCMS with air pollution from agricultural 

fires and investigate whether the introduction of health insurance can alleviate the long-term effects of pol-

lution exposure.  

3. Data 

To estimate the effects of agricultural fires on long-term outcomes, we assemble data from multiple 

 
5 The Hukou system, introduced after the founding of the People’s Republic of China, is a household registration sys-

tem that classifies citizens into two categories: agricultural and non-agricultural Hukou holders. This classification plays a 

crucial role in determining an individual’s eligibility for social services and welfare, which are tied to their place of reg istra-

tion. Hukou status is inherited from one’s parents and is subject to strict government controls, making changes to Hukou type 

or registered location highly restricted.  
6 For instance, the average payment of the NCMS was 246 RMB in 2011 (approximately 35 USD), of which 84 percent 

was financed by the government, and households were only required to contribute 39 RMB annually per person.  
7 The remaining 20% counties only cover outpatient services for catastrophic diseases or did not cover outpatient ser-

vices at all.  
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sources, including individual surveys that document adolescent outcomes and track cohorts into their adult-

hood, satellite-derived measures of agricultural potential yield, agricultural fires, air pollution, and other 

meteorological variables. Additionally, to investigate the mitigating role of rural health insurance, we also 

collect the timing of NCMS implementation across counties. In what follows, we introduce these data in 

turn, illustrate how we merge across different datasets, and present summary statistics.  

3.1 The China Family Panel Studies (CFPS) 

Our primary data source is from China Family Panel Studies (CFPS), a nationwide survey data imple-

mented by the China Social Science Survey Center of Peking University, which has been conducted bienni-

ally as a tracking survey since 2010. It covers 162 counties in 25 provinces in China, representing 94.5% of 

the country's total population (Xie 2012). The survey is conducted on a household basis for each member of 

the household, and baseline households are continuously tracked in subsequent surveys.   

We rely on CFPS 2010 to explore the effects of in-utero exposure to agricultural fires on adolescent 

outcomes and provide supplemental evidence on adult outcomes using CFPS 2020. We include only the 

sample that had a local Hukou and were born and resided in the county at age 3 and at the time of the survey, 

so that the sample would be most likely to be measured with correct exposure intensity and suffer less con-

cerns of endogenous migration. We primarily focus on the effects on the rural sample where the agricultural 

fire occurs, but for the following empirical exercises, we will also present the corresponding results for the 

urban sample for either comparison or falsification tests.  

Besides birth year, CFPS 2010 additionally provides the birth month of each individual, which we ex-

ploit as a source of variation to distinguish the effects of exposure to agricultural fires during different tri-

mesters. Specifically, we denote the last 3 months prior to the birth month as the third trimester, the 3 -6 

months before birth as the second trimester, and the 6-9 months before birth as the first trimester. Since we 

do not have data on the exact birth date, this definition of trimesters may be measured with error. Neverthe-

less, as long as the date of birth is randomly distributed, such measurement error would only lead to an 

underestimation.  

To ensure that our results are not driven by the selection of different birth months, we visualize the 

distribution of birth months in Figure 1. Though not perfectly balanced, the distribution of birth months is 

relatively flat and we observe no significant spikes at first glance. This alleviates the potential concerns that 

parents may strategically choose the timing of birth to avoid pollution exposure.8 We provide more solid 

statistical evidence in our subsequent empirical analysis to show that the birth month is not correlated with 

potential exposure to agricultural fires.  

We measure the health and cognitive outcomes of adolescents using the CFPS 2010. Specifically, we 

measure the health outcomes of adolescents using three variables. The first variable is a categorical measure 

of general health status, which is self-rated and ranges from 1 to 5 (1 = very good, 2 = good, 3 = fair, 4 = 

poor, 5 = very poor). We define a dummy variable for not-in-good health, which takes the value of 1 if the 

self-rated health status is greater than 3 (i.e., poor or very poor), and 0 otherwise. The second variable is a 

dummy variable indicating whether the adolescent was hospitalized due to illness in the previous year. The 

third variable measures the occurrence of respiratory diseases, which are more closely related to air pollution. 

Specifically, we use the illness type classification provided in the CFPS to identify whether the adolescent 

 
8 Since most of our sampled individuals born during the 1990s, we believe that the selection of birth month due to air 

pollution is less plausible. First, the information on air quality is relatively scarce back in that time, and the construction of 

air quality monitoring stations does not begin until 2000s, which are measured with great error due to local discretion 

(Greenstone et al. 2022). Second, the public awareness on the detrimental effects of air pollution is relatively low (Xie, Yuan, 

and Zhang 2023; Barwick et al. 2024).  
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has respiratory diseases.9 To avoid issues with multiple hypothesis testing, we create an unhealthiness index 

by first standardizing the three health variables, and then calculating the simple average of their standardized 

z-scores (Boudreaux, Golberstein, and McAlpine 2016; Hoynes, Schanzenbach, and Almond 2016). We 

measure the cognitive abilities of adolescents using two test scores, i.e., a word test score and a math test 

score. To ensure comparability across different age cohorts, we calculate the age-specific standardized z-

scores for both test scores (Huang and Liu 2023).  

 

Figure 1 The Distribution of Birth Month 

Notes: This figure presents the distribution of birth months of adolescents surveyed in CFPS 2010.  

In addition, CFPS 2010 asks adolescents about their attitudes toward a range of statements (e.g., “I 

decide my own life goals” or “Some children are born lucky”), which we exploit to reflect the personal traits 

of the respondents. Individuals respond with their level of agreement on each statement, which we re-coded 

as categorical variables ranging from 1 to 5, with greater values representing a higher degree of agreement. 

We divide these statements into two broad categories reflecting positive and negative attitudes.10 We then 

follow Grönqvist, Nilsson, and Robling (2020) and use the principal component analysis (PCA) to combine 

these subscores into two general measures of noncognitive ability (reflecting positive and negative attitudes 

toward life).  

Besides current outcomes, CFPS 2010 also provides retrospective data on birth conditions, which ena-

bles an investigation of the effect of in-utero exposure to agricultural fires on health outcomes at birth. This 

serves as a potential channel for the long-term effects of fire-induced air pollution. Specifically, we measure 

health at birth with three outcome variables. The first is the number of illnesses at age 1. The second is the 

length of the gestation period (measured in months). The third is the birth weight (measured in 500 grams).  

To investigate the channel of intra-household resource allocation, we use two additional measures of 

 
9 These include upper respiratory tract infections, pneumonia, chronic laryngitis, emphysema, other chronic obstructive 

pulmonary diseases (including chronic bronchitis), asthma, and other respiratory diseases.  
10 Specifically, statements that reflect positive attitudes include (1) “I pursue my own values instead of following oth-

ers”, (2) “I decide my own life goals”, (3) “Once I start something, I have to finish it no matter what”, and (4) “I am the kind 

of person who believes that planning ahead will make things better”. Whereas statements that reflect negative attitudes in-

clude (1) “Some children are born lucky”, (2) “Don't spend too much time trying, because it will never prove to be useful”, 

(3) “Once you make a mistake, it's almost impossible to correct it”, (4) “The best way to deal with problems is not to think 

about them”, and (5) “When bad things are about to happen, they are going to happen no matter how hard you try to stop 

them”.  
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health expenditure and education expenses to proxy for the parental investment in adolescents' human capital.  

We include several control variables to mitigate concerns of omitted variable bias. Specifically, we 

control for the age and gender of adolescents, parental age, birth month, and education. We also include 

controls for family income, family size, and number of siblings.  

To estimate the effects of in-utero exposure to agricultural fires on adulthood outcomes, we track ado-

lescents in CFPS 2010 (aged between 10-15 at the time of survey) to CFPS 2020 using the unique individual 

ID. We measure the effects of fire exposure on educational attainment and labor market outcomes using three 

variables. The first variable is the number of years of schooling completed. Since some individuals may not 

have finished their education by the time of the survey, we normalize this by age to calculate age-specific 

years of schooling. The second measure is the annual wage. Given that some individuals may not be partic-

ipating in the labor market, we restrict our sample to those with non-zero earnings. The third measure is a 

dummy variable indicating whether the individual works in the agricultural sector, which generally requires 

lower skills compared to work in the manufacturing sector. Panel A of Table A1 provides summary statistics 

for the above variables.  

3.2 Agricultural fires and potential yield 

The agricultural fire data used in our paper is sourced from NASA's MODIS aboard the Terra and Aqua 

satellites, which has been frequently used in recent studies on agricultural fires (Cao and Ma 2023; Nian 

2023). These satellites pass over China twice daily, typically occurring between 10 am and 3 pm, and be-

tween 9 pm and 2 am China Standard Time. We identify agricultural fires by leveraging land cover data from 

the China Land Cover Dataset (CLCD), a remotely sensed product providing nationwide land type classifi-

cations at 30-meter resolution from 1990 to 2020 (Yang and Huang 2021). We match the fire point data to 

the land cover raster and define fires as agricultural fires if they occur within cropland pixels. The satellites 

started to record fire points in November 2000, and we have no available data on fire records prior to this 

time point. Since the majority of our sampled individuals were born before 2000 (aged between 10-15 in 

2010), this data limitation prevents us from directly estimating the effects of the number of fires on adoles-

cent and adult outcomes.  

 

Figure 2 The Distribution of the Fire Month 

Notes: This figure presents the distribution of fire months, which is defined as the month with the highest agricultural 

fire frequency.  
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That said, the occurrence of agricultural fire still provides useful information for our research design. 

Since we identify the effects of fire exposure primarily using variations in the birth month (and thus exposure 

to fires during different trimesters), it’s essential to pin down the month with the highest frequency of agri-

cultural fires. To do so, we calculate the total number of agricultural fires within each county -month cell 

from 2001 to 2019, and determine the month with the highest frequency of fires for each county (hereafter 

referred to as “fire month”). To reduce measurement error, we omit counties with fewer than 100 fire points 

and assign a month as a fire month only if the fire frequency is at least 30% of the total frequency. Figure 2 

presents the distribution of fire months. Unlike the distribution of birth months, the distribution of fire 

months is uneven. We see three peak months in the figure: March (February), June, and October. The three 

months correspond to the spring peak of straw burning activities in the northeastern region, the summer and 

autumn peaks in the central and southern regions. The change of fire months across different counties pro-

vides sufficient variation for our identification. Specifically, by comparing the fire month with the birth 

month of each individual, we are able to pin down the trimester during which the individual is exposed to 

agricultural fires.  

Since data on agricultural fires is not available for our sampled cohorts, we need a valid proxy to pro-

duce convincing estimates. To this end, we use the agricultural potential yield calculated using the Global 

Agro-Ecological Zones (GAEZ) model as a proxy for the occurrence of agricultural fires.11 The data used 

in this paper is from Liu, Xu, and Chen (2015), who constructed the potential yield raster for China at 1km 

resolution using different crops.12,13 For instance, the top three crops used for data construction are wheat, 

maize, and rice, which are the main contributors to crop residues.  

Formally, for the potential yield to be a valid proxy for agricultural fire and air pollution, we processed 

the data with the following steps. In the first step, we create grid-level data covering the entire China's terri-

tory and map the potential yield raster with the grid. In the second step, we match this grid with the county 

shapefile and determine the relative location of the grid to the county center based on longitude and latitude. 

In the third step, we leverage the wind direction (described in the next subsection) for each county's fire 

month and determine whether a specific grid is located in the upwind or downwind direction of a county.14 

Appendix Figure A2 gives an illustration of how we define the upwind direction. Finally, we calculate the 

county-level average potential yield for both upwind grids and non-upwind grids. If the potential yield is 

indeed a valid proxy for agricultural fires and air pollution, we should find strong evidence that the potential 

yield is positively correlated with both the number of agricultural fires and air pollution. Moreover, we 

should observe that, while both upwind and non-upwind potential yield correlate with agricultural fire oc-

currence, only upwind potential yield should have statistically significant predictive power on air pollution. 

We empirically provide valid support for these hypotheses in the next section.  

 
11 The GAEZ model first estimates the light-temperature production potential for a crop based on temperature and solar 

radiation, then combines water availability, soil properties, and topography to estimate the light-temperature-water produc-

tion potential. It simulates the climatic production potential under ideal conditions and, considering factors like agricultural 

technology and arable land distribution, calculates the food production potential of each raster using a step-by-step limiting 

method.  
12 For more details on the data description, see https://www.resdc.cn/DOI/doi.aspx?DOIid=43.  
13 Liu, Xu, and Chen (2015) construct the potential yield data from 1970 to 2010 (in 10-year intervals). To avoid poten-

tial endogeneity, we use the potential yield data measured in 1990 and use data measured in alternative years as robustness 

checks.  
14 In our baseline specification, we use a criterion of 45 degree to determine whether a grid is located in the upwind, 

downwind, or non-wind direction. Alternative definitions of upwind direction are used as robustness checks.  

https://www.resdc.cn/DOI/doi.aspx?DOIid=43
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3.3 Air pollution and other meteorological data 

We measure air pollution using PM2.5, the major pollutant emitted from agricultural fires. We obtain 

ground-level PM2.5 data from the NASA Socioeconomic Data and Applications Center (SEDAC).15 The 

dataset combines AOD retrievals from multiple satellite algorithms and exploits the GEOS-Chem chemical 

transport model to relate the total column measure of aerosol to near-surface PM2.5 concentration. Calibra-

tion is performed using Geographically Weighted Regression (GWR) to produce the final products. We ag-

gregate the raw raster data of PM2.5 concentrations, originally captured at a 1km resolution, to the county 

level and compute the year-month average of PM2.5 concentration for each county.  

We obtain meteorological data from the fifth-generation European Center for Medium-Range Weather 

Forecasts reanalysis dataset (ECMWF ERA-5). The ERA-5 dataset provides hourly, daily, and monthly at-

mospheric conditions at a resolution of 0.1 degrees (which is approximately 11km). We download a sequence 

of monthly weather conditions, including temperature, precipitation, humidity, sea level pressure, and wind 

speed. We collapse the weather data to the county-year-month level.  

The weather data serves two purposes. On the one hand, it allows for a more precise estimation of the 

effects of agricultural fires, as well as the potential yield on air pollution. More importantly, it allows us to 

control for the confounding effects of other in-utero weather conditions. For instance, a large strand of liter-

ature has shown that in-utero or early-life exposure to exogenous weather shocks (e.g., extreme heat, rainfall, 

drought, flood, etc.) could have both short-term impacts on birth outcomes and enduring effects on individ-

uals' life trajectories (Maccini and Yang 2009; Shah and Steinberg 2017; Wilde, Apouey, and Jung 2017; 

Rosales-Rueda 2018). To account for the confounding effects of these weather conditions, we control for the 

in-utero exposure to weather shocks by calculating the weather conditions experienced during each trimester.  

3.4 NCMS rollout 

We manually collect the data on the implementation timing of NCMS across counties from multiple 

sources, including news and media coverage, government announcements, and other documents. Appendix 

Figure A1 provides the geographic distribution of the rollout timing of the NCMS policy. To define whether 

the individual is exposed to the NCMS policy, we follow Huang and Liu (2023) and denote individuals who 

were less than 5 years old when the NCMS policy was implemented as those exposed to the policy. Appendix 

Table A2 provides summary statistics and balance tests between cohorts exposed and not exposed to the 

NCMS policy, finding limited evidence that exposure to the NCMS is based on the selection of individual 

covariates.16 To control for other concurrent early-life exposures that may confound the effects of NCMS 

exposure, we also control for some village-specific characteristics (e.g., accessibility to infrastructure, edu-

cation, and health facilities) and other village-cohort confounders, e.g., early-life exposure to tap water (Chen, 

Li, and Xiao 2022; Li and Xiao 2023).  

3.5 Summary statistics 

Appendix Table A1 presents the summary statistics for the main variables used in our empirical analysis. 

Panel A provides summary statistics for individual variables, separately for rural and urban samples. As 

shown in the table, rural adolescents are generally more disadvantaged in terms of health and cognitive 

 
15 The data is from (Hammer et al. 2020; 2022). See more details from https://sedac.ciesin.columbia.edu/data/set/sdei-

global-annual-gwr-pm2-5-modis-misr-seawifs-aod-v4-gl-03.  
16 Since the timing of the NCMS rollout is plausibly not randomly assigned (Gruber, Lin, and Yi 2023), we also report 

the results of the balance tests conditional on a set of county characteristics. Conditional on these additional characterist ics 

does not alter our results. See Appendix A for more details.  

https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod-v4-gl-03
https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod-v4-gl-03
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outcomes compared with urban adolescents. We see that rural adolescents report that they are more likely to 

feel in bad health (twice as the urban sample), while reporting (slightly) fewer hospital admissions than the 

urban adolescents. This may be the result of inadequate access to health facilities. In general, rural adoles-

cents are less likely to have respiratory disease than urban adolescents. This is plausible given that the air 

quality in urban regions is worse than that in rural areas. We also note that urban adolescents, on average, 

have better cognitive performance than rural adolescents. Tracking these adolescents ten years later, we find 

that rural individuals are more likely to complete less education and are more likely to enter the labor market: 

more than half of the rural sample have already started to work in 2020, while only a quarter of the urban 

sample have. Finally, the rural sample is more likely to stay in the agricultural sector.  

We also find that there is a relative balance in which trimesters individuals were exposed to agricultural 

fires. Ideally, the probability that an individual was exposed to agricultural fires at a specific trimester is 0.25 

if both fire month and birth month are randomly distributed. The summarized mean is close to this probability, 

and we observe no significant difference between the rural and the urban sample, both of which suggest that 

the selection of birth month is less likely to occur.  

We present summary statistics for county variables in Panel B of Table A1. Except for potential yield 

variables, all variables are defined at the county-year-month level. Data on agricultural fires is only available 

from 2001 onward, while data on PM2.5 and other meteorological variables are available from 1990 onward. 

For agricultural potential yield, we report both the upwind and downwind potential yield. Not surprisingly, 

the two variables are nearly identical regarding the mean and the standard deviation, as the wind direction at 

the fire month should be (and indeed is) orthogonal to the distribution of potential yield within the county.  

4. Validation of Fire Measures 

This section provides evidence that the agricultural potential yield is a valid proxy for agricultural fire 

as well as fire-induced air pollution. To start with, Figure 3 displays the geographic distribution of agricul-

tural fires (Panel A) and potential yield (Panel B). We observe a high correlation between the two variables. 

This is especially evident in the central region, where most counties are highly suitable for agricultural pro-

duction and have more burning activities. To lend further support, Figure 4 presents a binscatter plot showing 

the correlation between agricultural fires and potential yield. In addition to the spatial correlation docu-

mented in Figure 3, we also find strong evidence for a linear relationship between the two variables. Taken 

together, the above graphical evidence provides preliminary yet persuasive support for the strong correlation 

between agricultural fire and potential yield.  
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Panel A Distribution of agricultural fires 

 

Panel B Distribution of potential yield (kg/ha) 

Figure 3 Geographic Distribution of Agricultural Fires and Potential Yield 

Notes: This figure presents the geographic distribution of agricultural fires (Panel A) and potential yield (Panel B).  

Darker colors in Panel A correspond to more agricultural fires while lighter colors in Panel B correspond to higher potential 

yield.  
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Figure 4 Binscatter of Agricultural Fires versus Potential Yield 

Notes: This figure presents the binscatter plot for agricultural fires versus potential yield, with a fitted line colored in 
blue. The shaded Area is the 95% confidence interval. We standardize the potential yield to have a mean of 0 and a standard 

deviation of 1.  

Formally, we carry out the following regression specification to examine the correlation between agri-

cultural fires and potential yield:  

𝑦𝑐𝑝𝑚𝑡 =  𝛽0 + 𝛽1 𝐴𝑃𝑌𝑐 + Γ𝑾𝒄𝒑𝒎𝒕 + 𝛾𝑝𝑡 + 𝛾𝑝𝑚 + 𝛾𝑚𝑡 + 𝜖𝑐𝑝𝑚𝑡  (1) 

Where 𝑦𝑖𝑐𝑚𝑡  is the number of agricultural fires in county 𝑐 and prefecture 𝑝 that are observed in 

month 𝑚 and year 𝑡. 𝐴𝑃𝑌𝑐 is the agricultural potential yield in county 𝑐, which is time-invariant. We 

standardize the variable to have a mean 0 and a standard deviation of 1, so that the estimated coefficient, 𝛽1 , 

measures the effects of increasing the agricultural potential yield by one SD on the number of agricultural 

fires. We control for a set of time-varying meteorological covariates, 𝑾𝒊𝒄𝒎𝒕, which include dew point, sea 

level pressure, wind speed, temperature, and rainfall. To net out potential confounders and obtain a more 

precise estimate, we include a detailed set of fixed effects. Specifically, we control for the prefecture-year 

fixed effects, 𝛾𝑝𝑡 , the prefecture-month fixed effects, 𝛾𝑝𝑚, and the prefecture-year fixed effects, 𝛾𝑚𝑡 . The 

inclusion of these fixed effects absorbs substantial time-varying variations at the prefecture level, and allows 

us to only use within-prefecture variation to identify the effects of agricultural potential yield on the number 

of agricultural fires.17 We cluster the standard error at the prefecture level.  

Table 1 reports the results estimated using equation (1). We estimate the equation using both least 

squares and the Poisson Pseudo Maximum Likelihood (PPML) specification. The PPML specification per-

forms well in cases where the dependent variable is non-negative and has possibly many zeros, which is 

exactly the case with the fire observations.18 Specifically, the estimated coefficient from column (1) of Table 

1 suggests that a one SD increase in potential yield (corresponding to an increase in potential grain output 

by 2864 kg/ha) is associated with an additional 1.71 agricultural fires per month. This result remains largely 

unchanged when including meteorological controls in column (2). Considering that on average a county 

 
17 Due to the time-invariant nature of agricultural potential yield, we cannot control for any county-level fixed effects. 

We base our fixed effects at the city level as it is the immediate upper administrative division of the county.  
18 In the presence of potential zero values, log-like transformations may not be suitable as the logarithm of zero is un-

defined, and adding arbitrary constants to address this issue could introduce additional bias (Chen and Roth 2023). The 

PPML estimation avoids such concerns by directly modeling the non-negative dependent variable in levels, while still allow-

ing for an interpretation in terms of proportional or percentage changes.  

0.0

2.5

5.0

7.5

0 1 2 3 4

Standardized Potential Yield

 
 o
f 
A
g
ri
cu
lt
u
ra
l 
F
ir
e



 

16 

 

experiences 1.18 monthly agricultural fires, our estimates imply that a one SD increase in potential yield 

would nearly double the number of agricultural fires, representing an increase of approximately 145%. Turn-

ing to the results from PPML in columns (3) and (4), we find that a one SD increase in potential yield is 

associated with an approximately 48.7% increase in agricultural fires.19 In sum, the results from Table 1 

confirm the significant and robust correlation between agricultural potential yield and agricultural fires.20  

Table 1 The Effects of Agricultural Potential Yield on Agricultural Fires 

Dep. Var.   Agri. Fire (1) (2) (3) (4) 

 OLS PPML 

APY 1.711*** 1.722*** 0.473*** 0.487*** 
 (0.263) (0.267) (0.048) (0.047) 

     
Observations 660,972 660,972 603,024 603,024 

Prefecture-Year FE Yes Yes Yes Yes 

Prefecture-Month FE Yes Yes Yes Yes 
Year-Month FE Yes Yes Yes Yes 
Weather Controls No Yes No Yes 

Dep. Var. Mean 1.181 1.181 1.181 1.181 
Adjusted/Pseudo R-squared 0.196 0.199 0.620 0.633 

Notes: This table presents the estimated results of the effects of agricultural potential yield on agricultural fires. The 
observation is at the county-year-month level. Meteorological controls include dew point, sea level pressure, temperature, 
wind speed, and rainfall. Standard error is clustered at the prefecture level. * denotes significance at the 10% level. ** de-

notes significance at the 5% level. *** denotes significance at the 1% level.  

We then explore the relation between agricultural potential yield and air pollution. To do so, we modify 

our specification in equation (1) to allow for the differential effects of upwind and downwind potential yield. 

The idea is motivated by previous studies that identify the effects of agricultural fires on air pollution (e.g., 

Rangel and Vogl 2019; He, Liu, and Zhou 2020). Since pollution within a county is more likely to be caused 

by upwind fires, we should find strong correlations between upwind potential yield and air pollution, while 

observing weak correlations between downwind potential yield and air pollution. Specifically, we estimate 

the following specification:  

𝑦𝑐𝑝𝑚𝑡 =  𝛽0 + 𝛽1𝑈𝑝𝑤𝑖𝑛𝑑𝐴𝑃𝑌𝑐 + 𝛽2𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝐴𝑃𝑌𝑐 + Γ𝑾𝒊𝒄𝒎𝒕 + 𝛾𝑝𝑡 + 𝛾𝑝𝑚 + 𝛾𝑚𝑡 + 𝜖𝑐𝑝𝑚𝑡  (2) 

Where 𝑈𝑝𝑤𝑖𝑛𝑑𝐴𝑃𝑌𝑐 and 𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝐴𝑃𝑌𝑐 represent the average potential yield in the upwind and 

downwind region of the county, respectively. If the potential yield is indeed a valid measure, then we should 

estimate a significant result for 𝛽1  and an insignificant result for 𝛽2 .  

Table 2 presents the corresponding results. In columns (1) and (2), we first confirm that both upwind 

and downwind potential yield have significant predictive power on the number of agricultural fires. We also 

show that the coefficients are quantitatively analogous, which suggests that the two variables are balanced 

in terms of the effects on agricultural fires. Next, in columns (3) and (4), we regress the monthly PM2.5 on 

agricultural potential yield, and find a strong correlation between the two variables. This is not surprising 

given the significant effects of agricultural fires on PM2.5. Finally, in columns (5) and (6), we regress the 

monthly PM2.5 on both upwind and downwind potential yield. Aligning with our expectation, we show that 

only upwind potential yield has significant predictive power on air pollution, while finding an exactly null 

effect of downwind potential yield on air pollution. Specifically, the estimated coefficients in Table 2 suggest 

that a one SD increase in upwind potential yield is associated with a 0.82 increase in monthly agricultural 

fire and a 0.56 µg/m3 increase in monthly PM2.5. Put differently, we find that a per 10 points increase in 

 
19 Note that the coefficients from OLS are not directly comparable to those from PPML as 𝛽𝑜𝑙𝑠 reflects the absolute 

change while 𝛽𝑝𝑝𝑚𝑙 only reflects changes relative to the conditional mean of the dependent variable.  

20 To mitigate concerns of omitted variable bias and spurious correlation , in Appendix Table A3, we use non-agricul-

tural fires as a placebo test. Reassuringly, we find no evidence that agricultural potential yield is associated with non-agricul-

tural fires, the estimated coefficients are small in magnitude and insignificant.  
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agricultural fires is associated with an increase of monthly PM2.5 by 6.83 µg/m3, which is very similar to the 

results from He, Liu, and Zhou (2020).21  

To ensure that our estimated relationship between upwind/downwind potential yield is indeed driven 

by the occurrence of agricultural fires, we examine the effects of potential yield on other pollutants. If there 

are unobservables that drive the correlation between agricultural potential yield and air pollution, then we 

should find similar effects on other pollutants. But if the correlation is solely driven by the occurrence of 

agricultural fires, then we should expect to find no effects on other air pollutants. From County Statistical 

Yearbooks, we derive three common air pollutants (i.e., NOx, SO2, and Dust) that are less correlated with 

agricultural fires. We then re-run both equations (1) and (2) to examine whether they are correlated with 

potential yield. Appendix Table A4 reports the corresponding results. Consistently, we detect no statistically 

significant effect for all three air pollutants.  

Table 2 The Effects of Upwind/Downwind Potential Yield on Agricultural Fires and PM2.5 

 (1) (2) (3) (4) (5) (6) 

Dep. Var.    Agri. Fire PM2.5 

Upwind APY 0.822*** 0.817***   0.667*** 0.564*** 
 (0.306) (0.307)   (0.150) (0.148) 

Downwind APY 0.943*** 0.959***   -0.015 -0.008 

 (0.328) (0.330)   (0.169) (0.167) 
APY   0.762*** 0.630***   

   (0.089) (0.093)   
       

Observations 660,972 660,972 1,018,800 1,018,800 1,018,800 1,018,800 

Prefecture by Year FE Yes Yes Yes Yes Yes Yes 
Prefecture by Month FE Yes Yes Yes Yes Yes Yes 

Year-Month FE Yes Yes Yes Yes Yes Yes 

Weather Controls No Yes No Yes No Yes 
Dep. Var. Mean 1.181 1.181 63.81 63.81 63.81 63.81 

Adjusted R-squared 0.196 0.199 0.846 0.847 0.846 0.847 

Notes: This table presents the estimated results of the effects of upwind/downwind agricultural potential yield on agricul-
tural fires and PM2.5. The observation is at the county-year-month level. Meteorological controls include dew point, sea level 

pressure, temperature, wind speed, and rainfall. Standard error is clustered at the prefecture level. * denotes significance at the 

10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% level.  

Taken together, the above analyses offer valid support that the upwind and downwind agricultural po-

tential yields are able to provide valid and exogenous variation to identify the effects of fire-induced pollu-

tion on adolescent outcomes. Moreover, the difference in upwind-downwind coefficients allows us to effec-

tively rule out the potential income effects associated with agricultural fires (Rangel and Vogl 2019; He, Liu, 

and Zhou 2020). We will illustrate this point in further detail in the next section.  

5. The Impacts of Agricultural Fires 

This section outlines our empirical strategy, presents our main findings and robustness, and discusses 

several heterogeneity results. Specifically, we introduce how we build on our previous findings in Section 4 

to construct a valid exogenous variation. We then rely on the empirical framework to identify the health 

effects of in-utero exposure to agricultural fires and explore the robustness and heterogeneity of our findings. 

Despite health consequences, we also shed light on other outcomes, for instance, the development of cogni-

tive and non-cognitive ability. Finally, we track these cohorts ten years later and explore the effects on edu-

cation and labor market outcomes.  

 
21 Typically, using monthly data in the summer season, they show that per 10 points increase in agricultural fires in-

creases the monthly PM2.5 by 4.43-5.03 µg/m
3.  
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5.1 Empirical specification 

Our empirical strategy exploits three sources of variation. The first is the difference between the fire 

month and the birth month, which we leverage to identify during which trimester the individual is exposed 

to agricultural fires. The second is cross-sectional variations from the differences in agricultural potential 

yield across counties, which we exploit to proxy for fire intensity. The third variation comes from changes 

in wind direction during the fire month, which we use to conduct upwind-downwind comparison that avoids 

any confounding factors that are systematically correlated with agricultural production. Specifically, we use 

the following specification:  

𝑦𝑖𝑐𝑚𝑡 = 𝛼 + ∑ 𝛽𝜏
𝑈𝑈𝑃𝑤𝑖𝑛𝑑𝐴𝑃𝑌𝑐 × {𝑇𝑟𝑖𝑚𝑒𝑠𝑡𝑒𝑟𝑖 = 𝜏} +

3

𝜏=1

∑ 𝛽𝜏
𝐷𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝐴𝑃𝑌𝑐 × {𝑇𝑟𝑖𝑚𝑒𝑠𝑡𝑒𝑟𝑖 = 𝜏}

3

𝜏=1

+Λ𝑿𝑖𝑐𝑚𝑡 + ∑ Γ𝜏𝑾𝑐𝑚𝑡 ,{𝑇𝑟𝑖𝑚𝑒𝑠𝑡𝑒 𝑟𝑖 =𝜏} +

3

𝜏=1

𝛾𝑚𝑡 + 𝛾𝑐 + 𝜖𝑖𝑐𝑚𝑡

(3) 

Where 𝑦𝑖𝑐𝑚𝑡  denotes the outcome of individual 𝑖 living in county 𝑐 that was born in month 𝑚 and year 

𝑡. 𝑈𝑃𝑤𝑖𝑛𝑑𝐴𝑃𝑌𝑐 and 𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝐴𝑃𝑌𝑐 are similarly defined as in equation (2). {·} is an indication func-

tion, which denotes during which trimester the individual is exposed to agricultural fire. Individuals not 

exposed to agricultural fires during their whole gestation period are left as the comparison group. 𝑿𝑖𝑐𝑚𝑡  

denotes a set of individual covariates, which include gender, age, father's and mother’s age, education, family 

income, family size, and number of siblings. 𝑾𝑐𝑚𝑡,{𝑇𝑟𝑖𝑚𝑒𝑠𝑡𝑒 𝑟𝑖 =𝜏}  is individual-birth year-trimester specific 

controls that account for the confounding effects of weather conditions. Typically, it includes a set of mete-

orological controls (i.e., temperature, rainfall, humidity, sea level pressure, and dew point), which we average 

to county-trimester-year level and then match with each individual based on their birth month, birth year, 

and county of birth. 𝛾𝑚𝑡  and 𝛾𝑐 are birth year-month and county fixed effects, respectively. Finally, the 

standard error is clustered at the county level to account for any unobserved arbitrary correlations within the 

county.  

The parameters of interest are 𝛽𝜏
𝑈s and 𝛽𝜏

𝐷s, which capture the effects of upwind and downwind po-

tential yield (and hence agricultural fires). However, neither of the coefficients has a causal interpretation. 

Since agricultural fires typically occur shortly after harvesting, this, in turn, could generate substantial in-

come effects that confound the true effects of prenatal agricultural fire exposure (Rangel and Vogl 2019; He, 

Liu, and Zhou 2020). To partial out such income effects, we exploit the fact that only upwind agricultural 

potential yield is correlated with air pollution and that the wind direction is plausibly uncorrelated with 

agricultural production. Therefore, although both 𝛽𝜏
𝑈 and 𝛽𝜏

𝐷 are confounded by income effects, the mag-

nitudes of such effects should be quantitatively the same, and hence a difference between the two coefficients 

should efficiently remove the confounding income effects.22 To this end, we focus on the estimation of 

parameter 𝜃𝜏, which is defined as:  

𝜃𝜏 =  𝛽𝜏
𝑈 − 𝛽𝜏

𝐷. 

Valid identification of 𝜃𝜏 requires two additional assumptions. The first assumption is that wind direc-

tion is orthogonal to potential income effects. To support this assumption, we re-estimate equation (2), with 

the dependent variable replaced by a set of outcomes that are correlated with agricultural production (e.g., 

grain output, rural income, agricultural employment, and agricultural GDP).23 Appendix Table A5 reports 

the results. We additionally report the estimated results for the differences between upwind and downwind 

 
22 For this reason, in our subsequent analyses, we only report the estimated results for the differences between 𝛽𝜏

𝑈 and 

𝛽𝜏
𝐷, a la Rangel and Vogl (2019).  

23 The data is derived from County Statistical Yearbooks, 2000-2019.  
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coefficients to examine whether the effects of potential yield are statistically different with respect to wind 

direction. While we find that both upwind and downwind agricultural potential yields are significantly cor-

related with all four measures of agricultural production, the estimated coefficients for their differences are 

small in magnitude and statistically insignificant. This piece of evidence provides support that the upwind-

downwind comparison can indeed effectively partial out the confounding income effects.  

The second assumption is that there is no selection into the birth month. If households are aware of the 

negative impacts of fire exposure, then parents may reschedule their timing of reproduction to avoid in-utero 

pollution exposure in ex-ante. Such endogenous selections may bias our results by overestimating the true 

effects of agricultural fire exposure. To ensure that this is not the case, we examine whether agricultural fire 

impacts the decision on the birth month. To do so, we regress three dummies indicating during which tri-

mesters individuals are exposed to agricultural fires on upwind and downwind potential yields. If households 

are indeed responding to fire-induced air pollution, then we should find significantly negative correlations 

in these regressions. Appendix Table A6 reports the corresponding results, based on the regression specifi-

cation in equation (2).24 Reassuringly, we find no evidence supporting the presence of birth month selection, 

with all coefficients being insignificant. In Appendix Table A7, we further examine the effects of agricultural 

fire intensity on fertility decisions. A recent study by Gao, Song, and Timmins (2024) finds that pollution 

exposure may distort the fertility decision, therefore, another related concern is the potential fertility selec-

tion. We show that this is not the case in the rural sample. Typically, results from column (1) of Table A7 

suggest that there are no significant correlations between upwind/downwind agricultural potential yield and 

the number of children. In columns (2) and (3), we focus on the number of boys and girls. Though there are 

significantly negative correlations between upwind potential yield and the number of girls, the effects van-

ished after accounting for the potential income effects. Taken together, the above exercises provide valid 

support for our identification strategy.  

Before we proceed to present our baseline results, several caveats of our research design should be 

borne in mind. First, the potential yield only varies cross-sectionally but has no variation in the time-series 

dimension. Thus, it only measures the average intensity of agricultural fires across different counties but 

cannot account for the variability of fire occurrence across different years. While this limitation prevents us 

from precisely identifying the treatment effects for cohorts born in different years, it does not essentially 

affect the estimation for cohorts born in different months, since we mainly exploit the within-year variation 

(i.e., differences in birth month) for identification. Second, our indirect measure of agricultural fires only 

allows us to identify the concurrent effects of in-utero exposure to fire-induced pollution, i.e., pollution that 

occurred during fire month. Ideally, to fully characterize the effects of in-utero pollution exposure, it would 

be better to use cumulative pollution or fire exposure. However, this is infeasible in our econometric frame-

work, and our empirical identification only partially captures such effects. Therefore, our estimated effects 

are better interpreted as a lower bound of the true effects.  

5.2 The effects of fire exposure on adolescent outcomes 

5.2.1 Health outcomes 

Unhealthiness index. Table 3 presents our baseline estimates on the effects of in-utero agricultural fire 

exposure on adolescent health. The dependent variable is a normalized health index with a greater value 

representing worse health conditions (see Section 3.1 for variable construction). Column (1) reports the par-

simonious specification where we include birth year, birth month, and county of birth fixed effect while 

 
24 As agricultural potential yield is time-invariant at the county level, our regression only controls for birth year by 

birth month fixed effects and prefecture fixed effects, and cluster the standard errors at the prefecture level.  
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controlling for individual characteristics. To control for the confounding effects of prenatal weather condi-

tions, in column (2), we include a set of meteorological controls. Column (3) augments the identification by 

further controlling for the birth year by month fixed effects. This allows us to effectively partial out any 

within-year seasonal activity and unobserved time trends. Across different specifications, the estimated co-

efficients are relatively stable, suggesting less concern about the selection on unobservables (Altonji, Elder, 

and Taber 2005; Oster 2019).  

Table 3 The Effects of Agricultural Fires on Adolescent Health 

 (1) (2) (3) (4) (5) 

Dep. Var. Unhealthiness Index 

Diff. Upwind-Downwind Trimester 1 1.428*** 1.454*** 1.433*** 2.378*** 0.778 
 (0.397) (0.428) (0.462) (0.668) (0.822) 

Diff. Upwind-Downwind Trimester 2 0.846** 0.832** 0.813** 1.436** 0.479 
 (0.384) (0.381) (0.401) (0.610) (0.796) 

Diff. Upwind-Downwind Trimester 3 1.563*** 1.567*** 1.524*** 2.174*** 1.540** 

 (0.332) (0.363) (0.385) (0.566) (0.649) 
      

Observations 1,567 1,567 1,567 746 799 

Sample Full Full Full Boy Girl 
Birth Year FE Yes Yes No No No 

Birth Month FE Yes Yes No No No 
Birth Year by Birth Month FE No No Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes 

Individual Controls Yes Yes Yes Yes Yes 
Weather Controls No Yes Yes Yes Yes 

Dep. Var. SD 2.011 2.011 2.011 2.011 2.011 

Adjusted R-squared 0.0304 0.0284 0.0194 0.0538 0.0156 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on adolescent health, 

using the rural sample. The dependent variable is a normalized health index with a greater value representing worse health 
conditions. The observation is at the county-cohort level, with each cohort defined by its birth month. Individual controls in-
clude gender, age, father’s education and age, mother’s education and age, family income, family size, and number of sib-

lings. Meteorological controls include dew point, sea level pressure, temperature, wind speed, and rainfall. All weather con-
trols are constructed by averaging the weather conditions during different trimesters. Standard error is clustered at the county 

level. * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% 

level.  

Regarding coefficients, we find that the effects are more pronounced when individuals are exposed to 

agricultural fires during the first and third trimesters, which is in line with findings from epidemiological 

and economic literature that the effects of pollution are more deleterious in the early and later gestation 

period (Glinianaia et al. 2004; Šrám et al. 2005; Currie and Neidell 2005; Kannan et al. 2006; Currie et al. 

2014; Rangel and Vogl 2019).25,26 Specifically, we estimate that a one SD increase in agricultural potential 

yield during the first and third trimesters (which approximately corresponds to a 0.8-0.9 unit increase in 

monthly agricultural fires) is associated with a 1.43 and 1.52 unit increase in the unhealthiness index, re-

spectively. Given that the SD of the outcome is 2.01, this is equivalent to an increase of 0.71 and 0.76 SD. 

The effects of exposure during the second trimester are smaller in magnitude, which suggests that a one SD 

increase in potential yield increases the unhealthiness index by 0.40 SD. Given that a one SD increase in 

potential yield is associated with an increase of PM2.5 by 0.76 µg/m3, our results imply that even a small 

amount of pollution exposure during the gestation period can lead to substantial long-term consequences.  

 
25 In the first trimester, rapid organogenesis and placental development make the fetus highly vulnerable to structural 

abnormalities, epigenetic changes, and impaired growth caused by pollution. During the third trimester, rapid fetal growth, 

brain development, and immune system maturation increase susceptibility to oxidative stress, low birth weight, and preterm 

birth. The second trimester is relatively less affected as it is a more stable developmental phase. Thus, pollution exposure 

during the first and third trimesters poses greater risks to fetal health and long-term outcomes.  
26 This evidence also suggests that the persistence of early life exposure is an important channel through which in-utero 

fire exposure impacts adolescent health outcomes. We discuss this mechanism later in the section.  
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In columns (4) and (5), we explore the gender heterogeneity in pollution exposure. We find that the 

effects are mostly concentrated on boys. This also aligns with previous epidemiological literature that male 

fetuses grow faster and have higher metabolic demands, making them more susceptible and vulnerable to 

oxidative stress and nutrient deprivation caused by air pollution. Typically, our estimates suggest that the 

effects of the same amount of agricultural fire exposure can worsen the health outcome of boys by more than 

40% compared to girls.  

In Appendix Table B1, we replicate our baseline results on the urban sample. In contrast to the signifi-

cant effects we find for the rural sample, we estimate insignificant impacts of agricultural fire exposure on 

the urban sample. Given that PM2.5 generated from straw burning can travel from rural to urban (Guo 2021), 

there are at least two reasons for the insignificant effects on urban adolescents. First, air pollution from 

agricultural fires has less negative impact on urban residents because (1) the pollution concentration decays 

as it travels from rural to urban, and (2) the pollution from agricultural fires is less deleterious than industrial 

air pollution.27 Second, urban residents have better access to health facilities and can mitigate the negative 

effects of pollution exposure. Our later investigation suggests that the former seems to be the primary reason.  

 

Figure 5 The Effects of Agricultural Fires on Adolescence Outcomes (Health Components) 

Notes: This figure visualizes the estimated coefficients of the effects of in-utero agricultural fire exposure during differ-

ent trimesters on adolescent health outcomes, including hospital admission, respiratory disease, and self-rated status, using 
the rural sample. All regressions include individual and weather controls. Point estimates and the corresponding 95% confi-

dence intervals are jointly presented.  

Health components. Figure 5 visualizes the estimated results for the three health components that we 

used to construct the unhealthiness index, i.e., hospital admission, respiratory disease, and self-rated health 

status. We find that exposure to agricultural fires in the first trimester increases the probability of hospital 

admission and feelings of bad health, while exposure during the third trimester significantly increases the 

probability of having respiratory disease and hospital admission. In Appendix Figure B1, we plot the effects 

of fire exposure on health components for the urban sample. Again, we find no statistically disenable effects 

of fire-induced pollution on any of the health components.  

Heterogeneity. Appendix Table A8 explores the potential heterogeneity of our baseline findings. In 

 
27 A recent study by Lee, Wilson, and Hsiang (2025) reveals that pollution from different sources can have different 

health impacts. Since industrial production is mainly concentrated in the urban sector, and emissions from industrial sources 

contribute more to air pollution than emissions from agricultural sources (He, Liu, and Zhou 2020), it is thus plausible that 

fire-induced pollution has indistinguishable impacts on health outcomes of urban residents.  
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columns (1) and (2), we divide our sample by whether the mother has completed middle school education. 

We show that our estimated effects are mostly driven by individuals whose mothers have lower education 

levels. In columns (3) and (4), we divide our sample by family income and find that the detrimental effects 

of pollution exposure are more pronounced for families with lower income. Together, this evidence suggests 

that agricultural fires have disproportionally stronger effects on more disadvantaged families, and the liquid-

ity constraints seem to be a potential driver of the observed negative outcomes.28 We will discuss this issue 

in further detail in the next section when we shed light on the role of parental investment. Finally, in columns 

(5) and (6), we divide the sample by whether the family is engaged in grain production, which is the major 

agricultural productivity that contributes to agricultural fires. We show that the effects are more significant 

for individuals from households engaged in grain production, which is in line with findings from Fletcher 

and Noghanibehambari (2024) that these households live closer to the cropland and are more exposed to 

pollution when the agricultural fire occurs.  

Table 4 The Effects of Agricultural Fires on Cognitive and Non-cognitive Ability 

 (1) (2) (3) (4) (5) (6) 

Panel A Cognitive Ability Standardized Word Test Score Standardized Math Test Score 

Diff. Upwind-Downwind Trimester 1 -0.598* -1.711*** 0.557 0.139 -0.185 0.665 
 (0.329) (0.514) (0.681) (0.476) (0.601) (0.879) 

Diff. Upwind-Downwind Trimester 2 -0.0148 -0.722 0.569 0.355 0.697 0.402 

 (0.299) (0.632) (0.625) (0.499) (0.765) (0.724) 
Diff. Upwind-Downwind Trimester 3 -0.256 -1.375*** 0.463 0.324 0.372 0.398 

 (0.308) (0.515) (0.659) (0.444) (0.622) (0.715) 

       
Observations 1,384 659 701 1,393 667 702 

Sample Full Boy Girl Full Boy Girl 
Adjusted R-squared 0.239 0.222 0.227 0.141 0.052 0.165 

Panel B Non-Cognitive Ability Positive Attitudes Negative Attitudes 

Diff. Upwind-Downwind Trimester 1 -0.817* -1.289* -0.252 1.447** 3.467*** 0.617 
 (0.538) (0.735) (0.939) (0.559) (0.910) (1.122) 

Diff. Upwind-Downwind Trimester 2 -0.571 0.362 -0.707 0.0656 2.359** 0.677 
 (0.558) (0.989) (0.906) (0.711) (1.188) (1.061) 

Diff. Upwind-Downwind Trimester 3 -0.844* -1.204* -0.150 0.476 2.349** 0.770 
 (0.495) (0.679) (0.950) (0.674) (1.036) (1.057) 
       

Observations 450 238 239 448 212 236 
Sample Full Boy Girl Full Boy Girl 

Adjusted R-squared 0.236 0.297 0.169 0.109 0.162 0.128 

Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes 
County of Birth FE Yes Yes Yes Yes Yes Yes 

Individual Controls Yes Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes Yes 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on adolescent cogni-

tive and non-cognitive ability, using the rural sample. The dependent variables in Panel A are age-specific standardized word 
test scores and math test scores. The dependent variables in Panel B are two measures that gauge the positive and negative 
attitudes of respondents. The observation is at the county-cohort level, with each cohort defined by its birth month. All re-

gressions include both individual and weather controls. Individual controls include gender, age, father’s education and age, 
mother’s education and age, family income, family size, and number of siblings. Meteorological controls include dew point, 

sea level pressure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging the weather con-
ditions during different trimesters. Standard error is clustered at the county level. * denotes significance at the 10% level. ** 

denotes significance at the 5% level. *** denotes significance at the 1% level.  

5.2.2 Cognitive and non-cognitive outcomes 

We then proceed to explore the cognitive and non-cognitive impacts of agricultural fire exposure. Table 

4 reports the corresponding results, with Panel A presenting the estimated coefficients for cognitive ability 

 
28 This finding aligns with previous studies which show that air pollution affect vulnerable families disproportionally 

(Jans, Johansson, and Nilsson 2018; Suarez Castillo, Benatia, and Thi 2025).  
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while Panel B presents the estimates for non-cognitive ability. In columns (1) and (4), we estimate the effects 

using a full sample, whereas in columns (2) and (3), as well as in columns (5) and (6), we estimate the gender 

heterogeneity in pollution exposure. Focusing on the cognitive outcomes, we show that in-utero exposure to 

agricultural fires significantly reduces word test scores but has an insignificant impact on math test scores. 

In line with findings from Table 3, we show that the negative effects on word test scores are solely driven by 

boys, and are pronounced if the exposure to agricultural fires occurs during the first and third trimesters.  

We also document a strong negative impact of agricultural fires on non-cognitive abilities. Specifically, 

we show that in-utero fire exposure during the first and third trimesters significantly decreases individuals' 

positive attitudes toward life and increases their negative attitudes in the meantime. Again, these effects are 

found in the male sample. Taken together, our estimates from Table 4 reveal that in-utero exposure to fire-

induced air pollution has strong detrimental effects on the development of cognitive and non-cognitive abil-

ities among male adolescents.29  

To streamline our empirics, we refer interested readers to Appendix C for additional evidence that sup-

ports the validity and robustness of our baseline findings. Specifically, we show that our results are robust 

to alternative definitions of the upwind direction, using alternative and more granular fixed effects, and ac-

counting for additional confounders. We also perform a randomized inference to ensure that our results are 

not driven by variations that may potentially correlate with our fire intensity measure.  

5.3 The effects of fire exposure on adult outcomes  

After showing that in-utero fire exposure can lead to worsened health and (non-)cognitive outcomes in 

adolescence, this subsection proceeds to present more evidence on whether these negative effects penetrate 

into adulthood and their potential impacts on educational attainment and labor market outcomes. Tracking 

the cohort in CFPS 2010 to CFPS 2020, Table A12 presents the estimated coefficients on the effects of in-

utero agricultural fire exposure on adulthood outcomes. We focus on three outcome variables measured in 

CFPS 2020: (1) the completed number of years of education, normalized by individuals’ age; (2) annual 

wage, conditioning on entering the labor market; and (3) a dummy variable that denotes whether the indi-

vidual is employed in the agricultural sector.  

Our findings indicate that in-utero fire exposure during the first trimester leads to a significantly short-

ened year of education completed. The estimated coefficient suggests that first-trimester exposure to agri-

cultural fires is associated with a 0.075 decrease in the completed year of education, and the effects are larger 

for males and insignificant for females. It is worth noting that, by the time of 2020, not all individuals had 

completed their education.30 It is therefore important to normalize the year of education by individuals’ age, 

which allows us to compare individuals born in the same year but in different months. We also show that 

first- and third-trimester exposure to agricultural fires leads to worsened labor market outcomes. Take the 

coefficients estimated from third-trimester exposure as an example, our estimates suggest that it would lower 

the annual wage by 4.3% and increase the probability of being employed in the agricultural sector by more 

than 34% for the male sample. Again, no significant impacts are detected for the female sample.31 Taken 

 
29 We present the estimated results of in-utero fire exposure on cognitive outcomes for the urban sample in Appendix 

Table B2, and again find no suggestive evidence that agricultural fires can affect the cognitive performance of urban adoles-

cents. We cannot replicate this exercise for non-cognitive performance as the sample size is too small to run the regression 

specification.  
30 Our sample size from Table A12 suggests that only half of the rural sample have completed their education and en-

tered the labor market in 2020.  
31 Appendix Table B3 replicates the results of agricultural fire exposure on education attainment in the urban sample, 

again finding no significant impacts. Unfortunately, due to the small sample size, we cannot recover the effects on labor mar-

ket outcomes.  
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together, our findings suggest that the effects of in-utero exposure to agricultural fires can have persistent 

deleterious long-term effects. Given the abundant studies that link the development of health, cognitive, and 

non-cognitive abilities to labor market outcomes (e.g., Grönqvist, Nilsson, and Robling 2020), our empirical 

exercises thus far provide comprehensive evidence relating pollution exposure to human capital development 

across different stages.  

6. Mechanisms 

6.1 Early-life outcomes 

To shed light on the mechanisms of long-term consequences of agricultural fire exposure, this subsec-

tion examines the effects of in-utero exposure on early-life outcomes. As previously documented by Rangel 

and Vogl (2019) that in-utero exposure to sugarcane fires can increase prenatal mortality and negatively 

affect health at birth. If our estimated long-term effects are indeed caused by exposure to fire-induced air 

pollution, then we should find strong negative correlations between in-utero fire exposure and early life 

outcomes. Table 5 presents the estimated results. Specifically, our evidence suggests that in-utero exposure 

to agricultural fires is positively correlated with the number of illnesses at age 1, and is negatively associated 

with gestation month and birth weight, indicating worsened health at birth and in early life. Moreover, the 

worsened early-life outcomes are exclusively concentrated in the male sample, which (partly) explains why 

the long-term effects of agricultural fire exposure are primarily driven by males.  

There are two natural concerns pertaining to our findings in Table 5. The first is to what extent survival 

to birth affects our main estimates, and the second is potential measurement errors in our independent vari-

ables due to reduced gestation periods. Theoretically, fetuses with higher health capital are more likely to 

survive when exposed to air pollution, and therefore the estimated effects are biased downward due to se-

lection into survival. Similarly, as measurement error is more likely to occur when individuals are more 

susceptible to pollution exposure, the estimated effects are also downwardly biased.  

Table 5 The Effects of Agricultural Fires on Early Life Outcomes 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Dep. Var.    Illness at Age 1 Gestation Month Birth Weight 

Diff. Upwind-Downwind Trimester 1 0.227 0.409* 0.139 -0.327** -0.672*** -0.151 -0.736* -1.859*** -0.116 
 (0.138) (0.232) (0.195) (0.131) (0.184) (0.175) (0.413) (0.615) (0.636) 

Diff. Upwind-Downwind Trimester 2 0.130 0.590* -0.201 -0.245 -0.367* -0.051 -0.242 -0.326 -0.150 

 (0.147) (0.305) (0.341) (0.167) (0.213) (0.215) (0.481) (0.586) (0.738) 
Diff. Upwind-Downwind Trimester 3 0.191** 0.236 0.245 -0.210 -0.530** 0.106 -0.253 -0.765 0.470 

 (0.096) (0.152) (0.158) (0.196) (0.219) (0.211) (0.410) (0.617) (0.669) 
          

Observations 2,308 1,178 1,114 2,622 1,331 1,277 2,661 1,349 1,298 

Sample Full Boy Girl Full Boy Girl Full Boy Girl 
Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Individual Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adjusted R-squared 0.142 0.155 0.136 0.216 0.207 0.249 0.137 0.089 0.174 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on early-life outcomes, using the rural sample. 
In columns (1) to (3), the dependent variable is the number of illnesses at age 1. In columns (4) to (6), the dependent variable is the length of the gesta-

tion period, measured in months. In columns (7) to (9), the dependent variable is the individual’s birth weight, measured in 500 grams. The observation 
is at the county-cohort level, with each cohort defined by its birth month. All regressions include both individual and weather controls. Individual con-

trols include gender, age, father’s education and age, mother’s education and age, family income, family size, and number of siblings. Meteorological 
controls include dew point, sea level pressure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging the weather 
conditions during different trimesters. Standard error is clustered at the county level. * denotes significance at the 10% level. ** denotes significance at 

the 5% level. *** denotes significance at the 1% level.  
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To explore whether exposure to agricultural fires increases infant mortality, we first calculate the num-

ber of children who did not survive to the survey year and the mortality rate within the household, where the 

latter is calculated by dividing the number of children that died by the number of children that survived to 

the survey year. Our results from Appendix Table A13 show that agricultural fire-induced air pollution has 

no significant effect on child mortality.32 However, this result does not preclude the confounding effect of 

potential unobservables, as we only exploit cross-sectional variation for identification. Thus, the results 

should be interpreted with great caution. We then examine whether the potential selection affects our main 

estimates. In Appendix Table A14, we replicate our estimated effects for the unhealthiness index, cognitive, 

and non-cognitive abilities by additionally controlling for child mortality and gestation length. The results 

are largely unaffected, suggesting less concern about selection.  

Taken together, the results in this section suggest that in-utero exposure to agricultural fires can have 

persistent detrimental effects on human capital formation and development. Specifically, it negatively affects 

health outcomes in early life, and leads to worsened health and (non-)cognitive outcomes in adolescence, 

which further translates into worsened educational attainment and labor market outcomes in adulthood. Un-

doubtedly, an important mechanism for these outcomes is the transmission of reduced prenatal health capital 

into later life. However, a largely unexplored mechanism is how pollution triggers intra-household responses 

and resource allocations (e.g., parental investment), and how these responses contribute to the observed 

outcomes. The next subsection discusses how parental investment responds to pollution exposure.  

6.2 Parental Investment 

In this subsection, we examine how parental investments of rural households respond to in-utero expo-

sure to agricultural fires. Theoretically, parents could either make compensatory or reinforcing investments. 

The compensating investment suggests that parents would devote more resources to their children who are 

more exposed to agricultural fire-induced air pollution, whereas the reinforcing investment suggests that 

parents would devote more resources to children who are less exposed to pollution, as the human capital 

return of investing in these children is higher. This section brings the theoretical ambiguity to our data and 

empirically investigates whether rural households make compensatory or reinforcing investments. Specifi-

cally, we investigate how parental investments in health and education respond to in-utero pollution exposure.  

6.2.1 Health investment 

We first examine how families adjust their health investment in response to in-utero pollution exposure. 

We measure the health investment by the health expenditures on children. Column (1) of Table 6 reports the 

estimated effects. We find that parents significantly reduced their investment in children’s health. Specifi-

cally, a one unit increase in fire exposure during the first trimester corresponds to approximately a 15.8% 

decrease in health expenses.33 Given that the mean value of health expenses of children in the rural area is 

401 RMB (approximately 61.7 USD), our estimates suggest that in-utero exposure to agricultural fires during 

the first trimester reduces parental health expenses by 63 RMB (corresponding to 9.75 USD).  

In columns (2) to (5), we investigate the potential heterogeneity of our results. Specifically, in columns 

(2) and (3), we divide the sample according to whether the mother has completed at least lower secondary 

 
32 Since CFPS 2010 only asks whether the child is alive and does not record in which year the child has passed away, 

the age of death is thus unknown, so as to whether it is prenatal death or postnatal death. Therefore, our estimated effects are 

a composite of both the effects on prenatal death and postnatal death.  
33 The magnitude is calculated by (exp (0.126)-1)/0.85, where we divide the coefficient by 0.85 since a one standard 

deviation increase in potential yield approximately corresponds to 0.85 increases in the number of agricultural fires.  
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education (corresponding to the low and high education groups). We find that the effects of investment re-

duction come mainly from households where the mother has lower education. Our estimates suggest that for 

mothers with lower education, in-utero exposure to agricultural fires reduces health expenses by 119.6 RMB 

(equivalent to 18.4 USD). This is in line with our results from Appendix Table A8, where we show that the 

effects of in-utero agricultural fire exposure on adolescent health are more pronounced if the mother has a 

lower level of education. In columns (4) and (5), we divide the sample according to the median value of 

family income (corresponding to the low and high income groups). We show that the effects are primarily 

driven by households with lower income, and the magnitude estimated from column (4) is comparable to the 

coefficients from column (2). Again, this result aligns with estimates from Table A8, where the effects of fire 

exposure on health are more significant for households with lower income. These heterogeneities in treat-

ment effects seem to suggest that resource constraint is a plausible driver of the observed outcomes.  

Table 6 The Effects of Agricultural Fires on Health Expenses 

 (1) (2) (3) (4) (5) 

Dep. Var. Log Health Expenses 

Diff. Upwind-Downwind Trimester 1 -0.126** -0.226** -0.162 -0.257* -0.004 
 (0.074) (0.098) (0.169) (0.133) (0.082) 

Diff. Upwind-Downwind Trimester 2 -0.119 -0.191* -0.071 -0.058 -0.128 

 (0.083) (0.110) (0.144) (0.114) (0.102) 
Diff. Upwind-Downwind Trimester 3 -0.057 -0.076 -0.195 -0.215* 0.015 

 (0.061) (0.105) (0.138) (0.115) (0.084) 
      

Observations 1,411 966 391 632 733 

Sample Full Low Education High Education Low Income High Income 
Birth Year by Birth Month FE Yes Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes 

Individual Controls Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes 

Adjusted R-squared 0.144 0.128 0.180 0.175 0.135 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on families’ health ex-
penses, using the rural sample. The dependent variable is the logged value of health expenses on children. The observation is 

at the county-cohort level, with each cohort defined by its birth month. Individual controls include gender, age, father’s educa-
tion and age, mother’s education and age, family income, family size, and number of siblings. Meteorological controls include 
dew point, sea level pressure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging the 

weather conditions during different trimesters. Standard error is clustered at the county level. * denotes significance at the 

10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% level.  

In Appendix Table B4, we investigate the effects on health expenses for the urban sample. As urban 

residents are less exposed to agricultural fires, they serve as an ideal placebo to examine whether our esti-

mated effects of health expenses reduction are indeed driven by in-utero agricultural fire exposure. Reassur-

ingly, we find neither effects nor heterogeneity of in-utero fire exposure on health expenses for the urban 

sample.  

6.2.2 Education investment 

We then examine how parental education investments respond to in-utero agricultural fire exposure. 

Similarly, we measure the education investments by parents’ education expenses on their children. Column 

(1) of Table 7 reports the estimated coefficients. We find that, in response to in-utero agricultural fire expo-

sure, parents significantly reduced educational investment in their children, and the effects are mostly pro-

nounced for individuals exposed during the third trimester. Specifically, the estimated coefficients suggest 

that a one unit increase in agricultural fire exposure during the third trimester is associated with an 8.7% 

decrease in parental education expenses for their children. Given that the mean value of education expendi-

ture is 629 RMB (approximately 96.8 USD), our estimates imply a reduction in education expenditure by 

54.7 RMB (corresponding to 8.4 USD).  



 

27 

 

In columns (2) to (5), we perform the same heterogeneous exercises as in Table 6. We find similar 

patterns that the reduction in education expenses is more significant for mothers with lower education and 

families with lower income. Analogously, in Appendix Table B5, we examine the effects of in-utero agricul-

tural fire exposure on education expenditure for the urban sample. Again, no significant effects are found.  

Table 7 The Effects of Agricultural Fires on Education Expenses 

 (1) (2) (3) (4) (5) 

Dep. Var. Log Education Expenses 

Diff. Upwind-Downwind Trimester 1 -0.030 -0.039 -0.008 -0.047 -0.032 
 (0.020) (0.022) (0.057) (0.029) (0.042) 

Diff. Upwind-Downwind Trimester 2 -0.003 -0.001 -0.015 -0.040 0.046 
 (0.032) (0.036) (0.049) (0.034) (0.068) 

Diff. Upwind-Downwind Trimester 3 -0.071*** -0.066** -0.058 -0.078*** -0.011 

 (0.021) (0.025) (0.047) (0.027) (0.057) 
      

Observations 2,049 1,452 571 1,105 881 
Sample Full Low Education High Education Low Income High Income 

Birth Year by Birth Month FE Yes Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes 
Individual Controls Yes Yes Yes Yes Yes 
Weather Controls No Yes Yes Yes Yes 

Adjusted R-squared 0.338 0.331 0.347 0.368 0.310 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on families’ education 

expenses, using the rural sample. The dependent variable is the logged value of education expenses on children. The observa-
tion is at the county-cohort level, with each cohort defined by its birth month. Individual controls include gender, age, father’s 
education and age, mother’s education and age, family income, family size, and number of siblings. Meteorological controls 

include dew point, sea level pressure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging 
the weather conditions during different trimesters. Standard error is clustered at the county level. * denotes significance at the 

10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% level.  

Taken together, our results in this section suggest that in response to negative early life shocks induced 

by in-utero exposure to agricultural fires, rural households reduce both health and education investment on 

their affected children. This aligns with the Reinforcement channel in which parents, constrained by limited 

resources, will invest less in children who have a lower return to human capital investment. More importantly, 

our results highlight salient unequal effects of early life pollution exposure, even in low-income settings like 

rural China. These results call for polices that aim to mitigate the negative effects of pollution exposure, 

especially policies that directly target rural households. In what follows, we examine the mitigating role of 

an important health insurance coverage in rural China, i.e., the rollout of the New Cooperative Medical 

Scheme.  

7. The Role of Health Insurance 

In the last part of our empirical investigation, we examine the role of health insurance in mitigating the 

adverse effects of pollution exposure during gestation on long-term outcomes. Given that parents reduce 

their human capital investment in response to in-utero exposure to agricultural fires, a related question is 

whether the coverage of health insurance can offset such reinforcing mechanisms. Besides, as the long-term 

persistence of early-life outcomes is another important channel, it is also of great importance to examine 

whether health insurance coverage can moderate the deleterious effects of pollution exposure on early out-

comes. We now present the formal analyses to these questions.  

7.1 Adolescent outcomes 

We first examine the role of health insurance in mitigating the effects of in-utero agricultural fire expo-

sure on adolescent outcomes. Columns (1) and (2) of Table 8 report the estimated results on the unhealthiness 
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index, where we divide our sample by whether the individual is exposed to NCMS before age 5, following 

Huang and Liu (2023).34 We show that the adverse health effects of in-utero fire exposure are primarily 

driven by individuals who are not exposed to NCMS. For individuals who are exposed to NCMS, the esti-

mated coefficients are small in magnitude and are insignificant. To ensure that our results are not driven by 

other concurrent exposure (e.g., exposure to tap water, electricity, etc.), in columns (3) and (4), we addition-

ally control for whether the individual is exposed to electricity, tap water, road, railway, and natural gas 

before age 5. Our results remain unaffected after the inclusion of these additional controls. In Appendix Table 

B6, we re-estimate our regression for the urban sample. As the NCMS only covers rural residents, we should 

find no mitigating effects for the urban sample. Not surprisingly, we reveal no effect of NCMS exposure on 

the urban sample.  

Table 8 The Effects of Early Exposure to NCMS on Adolescent Outcomes 

 (1) (2) (3) (4) 

Dep. Var. Unhealthiness Index 

Diff. Upwind-Downwind Trimester 1 0.714 1.516*** 0.434 1.566*** 
 (1.680) (0.432) (1.524) (0.458) 

Diff. Upwind-Downwind Trimester 2 0.0784 1.014** 0.249 1.063** 

 (0.882) (0.448) (1.074) (0.444) 
Diff. Upwind-Downwind Trimester 3 0.812 1.429*** 0.393 1.420*** 

 (1.505) (0.396) (1.396) (0.389) 
     

Observations 327 1,233 327 1,233 

Sample Exposure to 
NCMS 

Non-Exposure to 
NCMS 

Exposure to 
NCMS 

Non-Exposure to 
NCMS 

Birth Year by Birth Month FE Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes 
Individual Controls Yes Yes Yes Yes 

Weather Controls Yes Yes Yes Yes 
Other Exposure No No Yes Yes 

Adjusted R-squared 0.132 0.036 0.137 0.041 

Notes: This table presents the estimated results of the role of NCMS coverage in mitigating the effects of in-utero agri-
cultural fire exposure on adolescent health using the rural sample. The dependent variable is a normalized health index with a 
greater value representing worse health conditions. The observation is at the county-cohort level, with each cohort defined by 

its birth month. Individual controls include gender, age, father’s education and age, mother’s education and age, family in-
come, family size, and number of siblings. Meteorological controls include dew point, sea level pressure, temperature, wind 

speed, and rainfall. All weather controls are constructed by averaging the weather conditions during different trimesters. Other 
exposures include controls on whether the individual is exposed to electricity, tap water, road, railway, and natural gas before 
age 5. Standard error is clustered at the county level. * denotes significance at the 10% level. ** denotes significance at the 

5% level. *** denotes significance at the 1% level.  

7.2 Parental investment 

We then investigate whether the coverage of health insurance can mitigate the negative impacts of in-

utero pollution exposure on parental investment. Columns (1) and (2) of Table 9 examine the moderating 

effects of NCMS on health expenses. We find that for individuals who are exposed to the NCMS, in-utero 

exposure to agricultural fires does not significantly reduce parental health investment. For individuals who 

are not exposed to NCMS, fire exposure significantly reduces households’ health expenses for their children. 

As we show in Table 6 that the effects of in-utero fire exposure on health expenditure are mostly driven by 

mothers with lower education and households with lower income, in columns (3) to (6), we take a one step 

further and examine whether the rollout of NCMS can mitigate the reduction on health investment for these 

vulnerable subgroups. Our results confirm this hypothesis and reveal that, compared with individuals whose 

mother has a lower level of education and was not exposed to NCMS before age 5, individuals exposed to 

 
34 Unfortunately, due to our relatively small sample size, we cannot perform estimation for other cognitive and non -

cognitive outcomes.  
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NCMS receive relatively higher health investment, even if their mother has the same lower level of education. 

The same results hold for individuals who are from households with lower income. Moreover, we also notice 

that the coefficients in columns (3) and (5) are basically positive, though insignificant due to large standard 

errors. This provides suggestive evidence that the rollout of NCMS may increase parental health investment 

for individuals who are exposed to agricultural fires, and may turn the reinforcing behavior into compensa-

tory behavior.  

Table 9 The Effects of Early Exposure to NCMS on Health Expenses 

 (1) (2) (3) (4) (5) (6) 

Dep. Var. Log Health Expenses 

Diff. Upwind-Downwind Trimester 1 -0.068 -0.202* -0.129 -0.234** 0.095 -0.442*** 
 (0.088) (0.115) (0.245) (0.118) (0.215) (0.150) 

Diff. Upwind-Downwind Trimester 2 -0.074 -0.130 0.247 -0.251 0.290 -0.095 
 (0.091) (0.158) (0.356) (0.169) (0.314) (0.188) 

Diff. Upwind-Downwind Trimester 3 -0.099 -0.087 0.109 -0.056 0.189 -0.264 

 (0.124) (0.161) (0.261) (0.184) (0.272) (0.206) 
       

Observations 636 797 357 568 348 481 

Sample Exposure Non-Exposure 
Exposure & Low 

Education 
Non-Exposure & 
Low Education 

Exposure & 
Low Income 

Non-Exposure 
& Low Income 

Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes 
County of Birth FE Yes Yes Yes Yes Yes Yes 
Individual Controls Yes Yes Yes Yes Yes Yes 

Weather Controls Yes Yes Yes Yes Yes Yes 
Other Exposure Yes Yes Yes Yes Yes Yes 

Adjusted R-squared 0.176 0.098 0.087 0.064 0.169 0.102 

Notes: This table presents the estimated results of the role of NCMS coverage in mitigating the effects of in-utero agricultural fire exposure on 
parental health investment using the rural sample. The dependent variable is the logged value of health expenses on children. The observation is at 

the county-cohort level, with each cohort defined by its birth month. Individual controls include gender, age, father’s education and age, mother’s 
education and age, family income, family size, and number of siblings. Meteorological controls include dew point, sea level pressure, temperature, 
wind speed, and rainfall. All weather controls are constructed by averaging the weather conditions during different trimesters. Other exposures in-

clude controls on whether the individual is exposed to electricity, tap water, road, railway, and natural gas before age 5. Standard error is clustered at 

the county level. * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes  significance at the 1% level.  

In Appendix Table A15, we provide the same estimate for the mitigating effects of NCMS on parental 

education expenditure. Again, similar patterns emerge. We find that parental education investment does not 

respond to in-utero agricultural fire exposure for individuals who were exposed to NCMS, and that the mit-

igating role of NCMS exposure is more pronounced for individuals whose mother has lower education and 

individuals who are from households with lower income.  

7.3 Early-life outcomes 

We have shown that NCMS exposure can dampen the adverse effects of in-utero agricultural fire expo-

sure on adolescent health outcomes, and one potential mechanism is increased parental investment. A re-

maining question is whether early life outcomes are also improved due to the rollout of the NCMS. We 

empirically examine this issue in Table A16, where we compare the estimated coefficients on early-life out-

comes for individuals who are exposed and not exposed to NCMS. In contrast to previous findings, we find 

no discernible differences in treatment effects heterogeneity regarding whether the individual is exposed to 

the NCMS. This suggests that the rollout of NCMS may not mitigate the adverse effects of agricultural fires 

on individuals’ health at birth. One potential reason for this outcome may be that rural families may not be 

(sufficiently) aware of the negative effects of agricultural fire exposure during fetal life, so even with health 

insurance coverage, health outcomes early in life remain unimproved. This calls for further policy improve-

ment to enhance the awareness and dissemination of the harmful effects of potential sources of pollution in 

rural areas.  
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8. Conclusion 

This paper studies the long-term effects of in-utero exposure to agricultural fires. Using a nationally 

representative household dataset on rural China, we show that in-utero exposure to agricultural fires signif-

icantly decreases health outcomes, cognitive and non-cognitive performance in adolescence. The effects are 

mostly driven by exposure during the first and third trimesters, and are found to be larger in the male sample. 

Tracking these cohorts into their adulthood, we show that agricultural fire exposure during gestation leads 

to lower years of education and lower earnings, while increasing the probability of individuals working in 

low-skill sectors (e.g., agriculture).  

Exploring the potential mechanisms, we find that in-utero exposure to agricultural fires significantly 

worsens early-life health conditions (i.e., more illnesses at age 1, shorter gestation period, and lower birth 

weight). More importantly, we show that parental investment is another driver of the observed effects. Spe-

cifically, our evidence suggests that parents reduce their health and education investment in exposed children. 

The reduction effects are stronger for individuals whose mother has a lower education level and individuals 

from families with lower income, which suggests that the liquidity constraints may be a potential explanation. 

Finally, we investigate how the provision of public health insurance can mitigate the adverse effects of pol-

lution exposure. Exploiting the exogenous variation in the implementation of the NCMS program, we show 

that early-life exposure to NCMS can largely offset the negative effects of agricultural fire exposure. We 

further show that such mitigation is mainly through improvements in health and education investment, and 

is more pronounced for more disadvantaged households.  

Our findings underscore the critical need for policy interventions to mitigate the lifelong consequences 

of in-utero environmental shocks. First, given the heightened sensitivity during the first and third trimesters, 

region-specific regulations on agricultural burning should prioritize seasonal restrictions aligned with crop-

ping cycles, particularly in areas with high fire density. Complementary measures, such as real-time air qual-

ity monitoring and targeted advisories for pregnant women, could reduce fetal exposure during these vulner-

able windows. Second, the evidence on parental disinvestment, especially among low-income and low-edu-

cation households, calls for integrated social protection programs. Strengthening the New Cooperative Med-

ical Scheme (NCMS) and embedding liquidity support mechanisms (e.g., conditional cash transfers tied to 

health and education expenditures) could alleviate financial constraints that perpetuate underinvestment. Im-

portantly, the mitigating role of NCMS highlights the potential for scaling up health insurance to cover pol-

lution-related developmental risks, potentially through pollution-specific insurance riders or subsidies for 

high-risk populations.  
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Appendix A: Additional Tables and Figures 

Additional Tables 

Table A1 Summary Statistics 

 Obs Mean Std. Dev. Obs Mean Std. Dev. 

Panel A: Individual variables Rural Sample Urban Sample 

Adolescent outcomes       
Unhealthiness index 1846 0.009 2.011 1182 0.006 1.639 
Not in good health = 1 1846 0.030 0.172 1182 0.014 0.119 

Hospital admission = 1 1846 0.019 0.136 1182 0.022 0.146 
Respiratory disease = 1 1846 0.102 0.303 1182 0.173 0.379 
Word test score 1762 20.61 7.289 1162 23.36 6.318 

Math test score 1773 10.67 4.532 1165 11.91 4.226 
Health at birth       

  illness (age 1) 2691 3.058 5.145 2268 3.069 4.569 
Gestation month 3065 9.274 0.573 2607 9.363 0.583 
Birth weight (500g) 3128 7.105 1.654 2624 6.696 1.201 

Adulthood outcomes (CFPS 2020)       
Education year 1504 10.30 2.930 1218 10.40 2.896 
Annual wage (per thousand RMB) 830 72.32 34.54 329 36.23 34.99 

Work in agricultural = 1 830 0.122 0.327 329 0.083 0.276 
Agricultural fire exposure       

Exposed during the first trimester 3128 0.241 0.428 2624 0.229 0.421 
Exposed during the second trimester 3128 0.236 0.424 2624 0.220 0.414 
Exposed during the third trimester 3128 0.291 0.454 2624 0.312 0.463 

Covariates       
Age 3128 10.27 3.414 2624 8.994 3.519 
Gender 3128 0.513 0.500 2624 0.530 0.499 

Father’s age 3118 38.49 6.028 2605 37.09 5.627 
Father completed middle school 3128 0.434 0.496 2624 0.755 0.430 

Mother’s age 3081 36.42 5.703 2590 35.37 5.380 
Mother completed middle school 3128 0.295 0.456 2624 0.663 0.473 
Family income (per thousand RMB) 2988 25.27 46.58 2489 40.28 57.66 

Family size 3128 5.318 1.720 2624 4.672 1.696 
  of siblings 3110 2.343 1.291 2615 1.838 1.074 
Parental investment       

Health expense (per thousand RMB) 1815 0.401 0.962 1841 0.694 1.449 
Education expense (per thousand RMB) 3098 0.629 0.910 2598 1.583 2.109 

NCMS exposure       
Exposed to NCMS during 0-5 3128 0.429 0.495 2624 0.406 0.491 

Panel B: County variables Obs Mean Std. Dev. 
  of agricultural fires 660,972 1.181 10.42 

  of non-agricultural fires 660,972 1.460 10.74 
Potential yield (kg/ha) 1,046,539 3052 2865 

Upwind potential yield (kg/ha) 1,046,539 2957 3013 
Downwind potential yield (kg/ha) 1,046,539 2968 3037 
PM2.5 (µg/m3) 1,046,539 63.81 84.30 

Dew point 1,046,539 6.672 11.88 
Sea level pressure 1,046,539 1016 8.630 
Temperature 1,046,539 13.73 10.51 

Wind speed 1,046,539 2.333 0.798 
Rainfall 1,046,539 2.811 3.068 

Notes: This table presents the summary statistics for the main variables that are used in the empirical analysis. Panel A 
provides summary statistics for the individual sample from CFPS 2010 and CFPS 2020. Variables are separately summarized 
for both the rural and urban samples. Panel B provides summary statistics for county-level variables. Except for potential 

yield variables, all variables are defined at the county-year-month level.  

 

  



 

39 

 

Table A2 Balance Test between NCMS-exposed and Non-exposed Sample 

 NCMS-exposed NCMS-non-exposed Mean Diff. 

Variables Obs Mean Obs Mean Unconditional Conditional 

Age 1517 13.07 349 11.16 1.904*** 0.846*** 

Gender 1517 0.506 349 0.461 0.044 0.073* 
Father’s age 1513 40.54 348 40.15 0.392 0.0288 
Father completed middle school 1517 0.436 349 0.393 0.043 -0.001 

Mother’s age 1495 38.60 347 37.89 0.715* 0.377 
Mother completed middle school 1517 0.281 349 0.272 0.009 -0.008 
Family income (per thousand RMB) 1463 24.18 327 24.12 0.056 0.606 

Family size 1517 5.115 349 5.372 -0.258 0.144 
  of siblings 1510 2.239 346 2.494 -0.255* 0.008 

Notes: This table presents the results of summary statistics and balance tests between NCMS-exposed and non-exposed 
samples. The Unconditional differences perform a simple t-test between exposed and non-exposed individuals. Only the age 
variable is strongly significant, as we use age and NCMS implementation timing to distinguish whether the individual is ex-

posed to the policy. The conditional differences perform an OLS regression analysis by running each of the individual co-
variates on the NCMS exposure dummy while conditioning on a set of county-level characteristics, which includes counties’ 

grain output, rural income, agricultural employment, and agricultural GDP.  
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Table A3 The Effects of Agricultural Potential Yield on Non-agricultural Fires 

Dep. Var.   Non-agri. Fire (1) (2) (3) (4) 

 OLS PPML 

APY -0.117 -0.099 -0.135 -0.127 

 (0.085) (0.085) (0.093) (0.093) 
     

Observations 660,972 660,972 634,613 634,613 

Prefecture-Year FE Yes Yes Yes Yes 
Prefecture-Month FE Yes Yes Yes Yes 

Year-Month FE Yes Yes Yes Yes 

Weather Controls No Yes No Yes 
Dep. Var. Mean 1.460 1.460 1.460 1.460 

Adjusted/Pseudo R-squared 0.159 0.161 0.518 0.530 

Notes: This table presents the estimated results of the effects of agricultural potential yield on non-agricultural fires. The 
observation is at the county-year-month level. The sample period is from 2001 to 2019. Meteorological controls include dew 

point, sea level pressure, temperature, wind speed, and rainfall. Standard error is clustered at the prefecture level. * denotes 

significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% level.  
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Table A4 The Effects of Potential Yield on Agricultural Fires and Other Pollutants 

 (1) (2) (3) (4) (5) (6) 

Dep. Var.  NOx SO2 Dust 

Upwind APY  -0.513  0.063  0.108 

  (0.494)  (0.302)  (0.142) 
Downwind APY  0.168  -0.011  0.050 

  (0.154)  (0.221)  (0.309) 

APY -0.440  -0.015  -0.004  
 (0.438)  (0.401)  (0.404)  
       

Observations 53,920 53,920 53,920 53,920 53,920 53,920 
Prefecture by Year FE Yes Yes Yes Yes Yes Yes 

Weather Controls Yes Yes Yes Yes Yes Yes 
Dep. Var. Mean 0.101 0.101 4.617 4.617 2.570 2.570 

Adjusted R-squared 0.0747 0.0748 0.122 0.122 0.120 0.120 

Notes: This table presents the estimated results of the effects of upwind/downwind agricultural potential yield on agri-
cultural fires and air pollutants (NOx, SO2, and Dust). The observation is at the county-year level. The sample period is from 
2000 to 2019. Meteorological controls include dew point, sea level pressure, temperature, wind speed, and rainfall. Standard 

error is clustered at the prefecture level.  
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Table A5 The Differential Effects of Upwind/Downwind Potential Yield on Agricultural Production  

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dep. Var. Grain Output Rural Income Agri. Employment Agri. GDP 

Upwind APY  54.891***  0.359***  12.218***  21.237*** 

  (7.887)  (0.117)  (2.412)  (3.135) 
Downwind APY  51.840***  0.377***  11.499***  19.585*** 

  (8.444)  (0.140)  (2.534)  (3.020) 

APY 110.852***  0.889***  22.800***  43.098***  
 (11.984)  (0.127)  (2.949)  (4.031)  

Diff. Upwind-Downwind  3.051  -0.018  0.719  1.652 

  (11.397)  (0.221)  (4.038)  (4.774) 
         

Observations 53,920 53,920 53,920 53,920 53,920 53,920 53,920 53,920 
Prefecture by Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Dep. Var. Mean 224.3 224.3 7.530 7.530 112.9 112.9 113.9 113.9 
Adjusted R-squared 0.386 0.387 0.807 0.806 0.490 0.493 0.528 0.527 

Notes: This table presents the estimated results of the effects of upwind/downwind agricultural potential yield on a set of variables 

that are related to agricultural production to examine the income effects. The observation is at the county-year level. The sample period 
is from 2000 to 2019. Meteorological controls include dew point, sea level pressure, temperature, wind speed, and rainfall. Standard 

error is clustered at the prefecture level.  
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Table A6 Birth Month Selection 

 (1) (2) (3) 

Dep. Var.  Exposed in the 1st  
Trimester 

Exposed in the 2nd  
Trimester 

Exposed in the 3rd  
Trimester 

Upwind APY -0.006 -0.005 0.003 
 (0.040) (0.056) (0.042) 

Downwind APY 0.117 -0.128 0.028 

 (0.083) (0.094) (0.051) 
Diff. Upwind-Downwind -0.123 0.123 -0.025 

 (0.093) (0.126) (0.069) 

    
Observations 1,460 1,460 1,460 

Birth Year by Birth Month FE Yes Yes Yes 
Prefecture FE Yes Yes Yes 

Individual Controls Yes Yes Yes 

Weather Controls Yes Yes Yes 
Adjusted R-squared 0.188 0.137 0.205 

Notes: This table presents the estimated results of the effects of upwind/downwind agricultural potential yield on the 

birth month selection. The dependent variables are three dummies indicating during which trimester the individual is ex-
posed to agricultural fires. The observation is at the county-cohort level, with each cohort defined by its birth month. Individ-

ual controls include gender, age, father’s education and age, mother’s education and age, family income, family size, and 
number of siblings. Meteorological controls include dew point, sea level pressure, temperature, wind speed, and rainfall. All 
weather controls are constructed by averaging the weather conditions during different trimesters. Standard error is clustered 

at the prefecture level.  
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Table A7 Fertility Selection 

 (1) (2) (3) 

Dep. Var.    of Children   of Boys   of Girls 

Upwind APY -0.452 0.021 -0.473** 

 (0.304) (0.088) (0.236) 
Downwind APY 0.778 0.078 0.700 

 (0.778) (0.246) (0.564) 

Diff. Upwind-Downwind -1.230 -0.057 -1.173 
 (1.018) (0.316) (0.749) 
    

Observations 1,452 1,452 1,452 
Birth Year by Birth Month FE Yes Yes Yes 

Prefecture FE Yes Yes Yes 
Individual Controls Yes Yes Yes 
Weather Controls Yes Yes Yes 

Adjusted R-squared 0.138 0.148 0.187 

Notes: This table presents the estimated results of the effects of upwind/downwind agricultural potential yield on fertil-
ity selection. The dependent variable in column (1) is the number of children, whereas in columns (2) and (3), the dependent 

variables are the number of boys and girls, respectively. The observation is at the county-cohort level, with each cohort de-
fined by its birth month. Individual controls include the father’s education and age, the mother’s education and age, family 

income, family size, and number of siblings. Meteorological controls include dew point, sea level pressure, temperature, 

wind speed, and rainfall. Standard error is clustered at the prefecture level.  
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Table A8 The Heterogeneous Effects of Agricultural Fires on Health 

 (1) (2) (3) (4) (5) (6) 

Dep. Var. Unhealthiness Index 

Diff. Upwind-Downwind Trimester 1 1.137** 0.728 1.896*** 4.316 1.757*** 0.795 

 (0.518) (1.276) (0.635) (2.886) (0.532) (1.208) 
Diff. Upwind-Downwind Trimester 2 0.516 0.633 1.115  0.402 0.960** 0.188 

 (0.418) (1.308) (1.081) (1.637) (0.428) (1.387) 

Diff. Upwind-Downwind Trimester 3 1.555*** 0.366 1.850** 1.517 1.692*** -0.0191 
 (0.493) (1.206) (0.855) (1.765) (0.437) (1.159) 
       

Observations 1,384 659 701 640 667 702 

Sample 
Low 

Education 

High 

Education 

Low 

Income 

High 

Income 

Grain  

Production 

Non-grain  

Production 
Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes Yes 

Individual Controls Yes Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes Yes 
Adjusted R-squared 0.0383 0.0837 0.0673 0.0174 0.0522 0.0381 

Notes: This table presents the heterogeneity of our baseline results, using the rural sample. We consider the heterogene-
ous effects regarding three variables: mother’s education level (whether completed middle school), family income level 

(whether the family income is above the median value), and whether the family is engaged in grain production. The depend-
ent variable is a normalized health index with a greater value representing worse health conditions. The observation is at the 
county-cohort level, with each cohort defined by its birth month. Individual controls include gender, age, father’s education 

and age, mother’s education and age, family income, family size, and number of siblings. Meteorological controls include 
dew point, sea level pressure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging the 

weather conditions during different trimesters. Standard error is clustered at the county level. * denotes significance at the 

10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% level.  
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Table A9 Robustness: Controlling for Additional Time Trends and Fixed Effects 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dep. Var. Unhealthiness Index Word Test Score Positive Attitudes Negative Attitudes 

Diff. Upwind-Downwind Trimester 1 2.452*** 2.358*** -0.918* -1.179* -1.317* -1.321* 3.044*** 3.078*** 

 (0.824) (0.843) (0.560) (0.612) (0.771) (0.791) (0.873) (0.916) 
Diff. Upwind-Downwind Trimester 2 1.002 0.987 -0.204 -0.292 0.537 0.549 0.773 0.756 

 (0.728) (0.756) (0.616) (0.700) (1.117) (1.164) (1.343) (1.411) 

Diff. Upwind-Downwind Trimester 3 2.057*** 2.111*** -0.580 -0.587 -1.254 -1.254 1.511 1.496 
 (0.713) (0.768) (0.539) (0.608) (0.783) (0.824) (1.261) (1.317) 
         

Observations 746 712 741 712 238 235 212 208 
Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes Yes Yes Yes 
Province by Birth Year Trends Yes No Yes No Yes No Yes No 
Province by Birth Year FE No Yes No Yes No Yes No Yes 

Individual Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Adjusted R-squared 0.257 0.321 0.222 0.175 0.241 0.134 0.110 0.088 

Notes: This table presents the estimated results for including additional birth-year trends and birth-year fixed effects, using the rural sam-
ple. The dependent variable in columns (1) and (2) is the unhealthiness index, in columns (3) and (4), it’s the standardized word test score, in 

columns (5) and (6), it’s the positive measure of non-cognitive ability, while in columns (7) and (8), it’s the negative measure of non-cognitive 
ability. The observation is at the county-cohort level, with each cohort defined by its birth month. All regressions include both individual and 
weather controls. Individual controls include gender, age, father’s education and age, mother’s education and age, family income, family size, 

and number of siblings. Meteorological controls include dew point, sea level pressure, temperature, wind speed, and rainfall. All weather con-
trols are constructed by averaging the weather conditions during different trimesters. Standard error is clustered at the county level. * denotes 

significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% level.  
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Table A10 Robustness: Controlling for Additional Pollution Sources 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dep. Var. Unhealthiness Index Word Test Score Positive Attitudes Negative Attitudes 

Diff. Upwind-Downwind Trimester 1 2.714*** 2.714*** -1.278*** -1.263*** -1.336* -1.348* 3.515*** 3.396*** 

 (0.835 (0.837) (0.486) (0.483) (0.743) (0.765) (1.051) (1.038) 
Diff. Upwind-Downwind Trimester 2 1.290* 1.290* -0.545 -0.538 0.332 0.333 2.555* 2.825** 

 (0.699) (0.697) (0.593) (0.596) (0.984) (0.981) (1.287) (1.252) 

Diff. Upwind-Downwind Trimester 3 2.364*** 2.364*** -0.781 -0.777 -1.221* -1.207* 2.664** 2.930*** 
 (0.712) (0.720) (0.482) (0.480) (0.687) (0.676) (1.010) (1.004) 
         

Observations 737 737 737 737 235 235 210 210 
Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes Yes Yes Yes 
Indoor Air Pollution Yes Yes Yes Yes Yes Yes Yes Yes 
Water Pollution No Yes No Yes No Yes No Yes 

Individual Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Adjusted R-squared 0.120 0.113 0.239 0.237 0.280 0.274 0.176 0.186 

Notes: This table presents the estimated results for including additional birth-year trends and birth-year fixed effects, using the rural sample. In 
odd columns, we include controls for whether households use straws as their primary source of fuel. While in even columns, we  additionally con-

trol for the fertilizer expenses as a proxy for potential exposure to water pollution. The dependent variable in columns (1) and (2) is the unhealthi-
ness index, in columns (3) and (4), it’s the standardized word test score, in columns (5) and (6), it’s the positive measure of non-cognitive ability, 
while in columns (7) and (8), it’s the negative measure of non-cognitive ability. The observation is at the county-cohort level, with each cohort de-

fined by its birth month. All regressions include both individual and weather controls. Individual controls include gender, age, father ’s education 
and age, mother’s education and age, family income, family size, and number of siblings. Meteorological controls include dew point, sea level pres-

sure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging the weather conditions during different trimesters. 
Standard error is clustered at the county level. * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes signifi-

cance at the 1% level.  
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Table A11 Robustness: Controlling for Additional Infrastructure and Facility 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dep. Var. Unhealthiness Index Word Test Score Positive Attitudes Negative Attitudes 

Diff. Upwind-Downwind Trimester 1 2.612*** 2.675*** -1.067** -1.109** -1.493** -1.689** 3.912*** 4.234*** 

 (0.841) (0.888) (0.506) (0.506) (0.688) (0.670) (1.113) (1.243) 
Diff. Upwind-Downwind Trimester 2 1.177* 1.157* -0.389 -0.469 0.248 0.313 3.073** 3.393** 

 (0.682) (0.686) (0.585) (0.584) (1.026) (0.999) (1.488) (1.446) 

Diff. Upwind-Downwind Trimester 3 2.277*** 2.287*** -0.601 -0.643 -1.390** -1.416* 3.308*** 3.550*** 
 (0.724) (0.744) (0.490) (0.508) (0.679) (0.762) (1.198) (1.165) 
         

Observations 731 731 731 731 234 234 209 209 
Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes Yes Yes Yes 
Health and Educational Facilities Yes Yes Yes Yes Yes Yes Yes Yes 

Infrastructure Controls No Yes No Yes No Yes No Yes 

Individual Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Adjusted R-squared 0.0741 0.0653 0.253 0.255 0.283 0.269 0.0943 0.0519 

Notes: This table presents the estimated results for including additional birth-year trends and birth-year fixed effects, using the rural sample. In odd 
columns, we include controls for health and educational facilities (i.e., number of kindergartens and primary schools, and number of hospitals and pharma-

cies). While in even columns, we additionally control for the infrastructure construction at the village level (i.e., access to electricity, road, and railway). 
The dependent variable in columns (1) and (2) is the unhealthiness index, in columns (3) and (4), it’s the standardized word test score, in columns (5) and 
(6), it’s the positive measure of non-cognitive ability, while in columns (7) and (8), it’s the negative measure of non-cognitive ability. The observation is at 

the county-cohort level, with each cohort defined by its birth month. All regressions include both individual and weather controls. Individual controls in-
clude gender, age, father’s education and age, mother’s education and age, family income, family size, and number of siblings. Meteorological controls 

include dew point, sea level pressure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging the weather conditions dur-
ing different trimesters. Standard error is clustered at the county level. * denotes significance at the 10% level. ** denotes significance at the 5% level. 

*** denotes significance at the 1% level.  
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Table A12 The Effects of Agricultural Fires on Adulthood Outcomes 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Dep. Var.  Education Year Log Wage Work in Agriculture 

Diff. Upwind-Downwind Trimester 1 -0.075** -0.133* -0.032 -0.029** -0.019 -0.024 0.297** 0.416** 0.373 

 (0.036) (0.076) (0.054) (0.014) (0.083) (0.028) (0.128) (0.208) (0.226) 
Diff. Upwind-Downwind Trimester 2 -0.0200 -0.058 0.019 -0.028** -0.041** -0.021 0.337** 0.231 0.207 

 (0.041) (0.079) (0.070) (0.014) (0.017) (0.032) (0.162) (0.190) (0.192) 

Diff. Upwind-Downwind Trimester 3 -0.033 -0.019 -0.067 -0.023* -0.043** -0.025 0.217* 0.346* 0.340 
 (0.035) (0.083) (0.049) (0.013) (0.019) (0.030) (0.120) (0.193) (0.220) 
          

Observations 1,228 614 561 657 323 297 657 323 297 
Sample Full Boy Girl Full Boy Girl Full Boy Girl 

Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
County of Birth FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Individual Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Adjusted R-squared 0.180 0.208 0.145 0.030 0.033 0.198 0.059 0.102 0.040 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on adulthood outcomes, using the rural sample. 
In columns (1) to (3), the dependent variable is the number of education years completed, normalized by the individual’s age. In columns (4) to (6), the 
dependent variable is the logged value of annual wage, conditioning on whether the individual enters the labor market. In columns (7) to (9), the de-

pendent variable is a dummy that indicates whether the individual works in the agriculture sector. The observation is at the county-cohort level, with 
each cohort defined by its birth month. All regressions include both individual and weather controls. Individual controls include gender, age, father ’s 
education and age, mother’s education and age, family income, family size, and number of siblings. Meteorological controls include dew point, sea 

level pressure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging the weather conditions during different tri-
mesters. Standard error is clustered at the county level. * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes 

significance at the 1% level.  
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Table A13 The Effects of Agricultural Fire-Induced Air Pollution on Child Mortality 

 (1) (2) 

Dep. Var.   of Deaths mortality 

Upwind APY -0.018 -0.006 

 (0.033) (0.011) 
Downwind APY -0.115* -0.037* 

 (0.060) (0.021) 

Diff. Upwind-Downwind 0.097 0.031 
 (0.066) (0.023) 
   

Observations 1,452 1,322 
Birth Year by Birth Month FE Yes Yes 

Prefecture by Birth Year FE Yes Yes 
Prefecture by Birth Month FE Yes Yes 

Individual Controls Yes Yes 

Weather Controls Yes Yes 
Adjusted R-squared 0.0202 0.0594 

Notes: This table presents the estimated results of the effects of upwind/downwind agricultural potential yield on child 

mortality. The dependent variable in column (1) is the number of deaths, and the dependent variable in column (2) is the 
mortality rate calculated by dividing the number of deaths by the number of surviving children. The observation is at the 

county-cohort level, with each cohort defined by its birth month. Individual controls include the father’s education and age, 
the mother’s education and age, family income, family size, and number of siblings. Meteorological controls include dew 

point, sea level pressure, temperature, wind speed, and rainfall. Standard error is clustered at the prefecture level.  
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Table A14 Main Estimates after Control for Potential Selection 

 (1) (2) (3) (4) (5) (6) 

Dep. Var. Unhealthiness Index Standardized Word Test Score 

Diff. Upwind-Downwind Trimester 1 1.781** 2.781*** -0.289 -0.768* -1.988*** 0.564 

 (0.875) (0.875) (1.395) (0.400) (0.551) (0.818) 
Diff. Upwind-Downwind Trimester 2 0.856 1.256* -0.509 -0.048 -0.784 0.478 

 (0.692) (0.692) (1.455) (0.363) (0.665) (0.733) 

Diff. Upwind-Downwind Trimester 3 1.328*** 2.328*** 0.868 -0.352 -1.502** 0.512 
 (0.350) (0.750) (1.227) (0.376) (0.518) (0.750) 
       

Observations 1,561 755 784 1,385 671 690 
Sample Full Boy Girl Full Boy Girl 

Adjusted R-squared 0.0534 0.0234 0.0517 0.238 0.239 0.200 

 (7) (8) (9) (10) (11) (12) 

Dep. Var. Non-cognitive Ability (Positive) Non-cognitive Ability (Negative) 

Diff. Upwind-Downwind Trimester 1 -0.674 -1.319* -0.052 1.375** 3.244*** 0.582 
 (0.526) (0.728) (0.931) (0.561) (1.026) (0.955) 

Diff. Upwind-Downwind Trimester 2 -0.613 0.0097 -0.318 -0.014 2.420* 0.522 

 (0.529) (0.972) (0.912) (0.698) (1.280) (1.024) 
Diff. Upwind-Downwind Trimester 3 -0.798* -1.323* -0.382 0.474 2.309** 0.814 

 (0.471) (0.634) (0.875) (0.680) (1.098) (1.053) 
       

Observations 443 232 232 441 209 229 

Sample Full Boy Girl Full Boy Girl 
Adjusted R-squared 0.247 0.301 0.187 0.111 0.137 0.165 

Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes Yes 
Individual Controls Yes Yes Yes Yes Yes Yes 

Weather Controls Yes Yes Yes Yes Yes Yes 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on adolescent health, 
cognitive, and non-cognitive ability by additionally controlling for selection, using the rural sample. The dependent variables 

are the unhealthiness index in columns (1) to (3), age-specific standardized word test scores in columns (4) to (6), positive 
measure of cognitive ability in columns (7) to (9), and negative measure of cognitive ability in columns (10) to (12). The 

observation is at the county-cohort level, with each cohort defined by its birth month. All regressions include both individual 
and weather controls. Individual controls include gender, age, father’s education and age, mother’s education and age, family 
income, family size, and number of siblings. Meteorological controls include dew point, sea level pressure, temperature, 

wind speed, and rainfall. All weather controls are constructed by averaging the weather conditions during different tri-
mesters. Standard error is clustered at the county level. * denotes significance at the 10% level. ** denotes significance at the 

5% level. *** denotes significance at the 1% level.  
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Table A15 The Effects of Early Exposure to NCMS on Education Expenses 

 (1) (2) (3) (4) (5) (6) 

Dep. Var. Log Education Expenses 

Diff. Upwind-Downwind Trimester 1 0.016 -0.022 0.137 -0.051 0.022 -0.099** 

 (0.049) (0.035) (0.155) (0.035 (0.063) (0.031 
Diff. Upwind-Downwind Trimester 2 -0.023 0.057 0.002 0.029 0.017 0.026 

 (0.053) (0.050) (0.136) (0.054) (0.077 (0.076) 

Diff. Upwind-Downwind Trimester 3 -0.048 -0.070* -0.004 -0.110* -0.044 -0.149*** 
 (0.049) (0.040) (0.147) (0.031 (0.066) (0.038 
       

Observations 846 1,151 550 842 490 725 

Sample Exposure Non-Exposure 
Exposure & Low 

Education 

Non-Exposure & 

Low Education 

Exposure & 

Low Income 

Non-Exposure 

& Low Income 
Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes Yes 

Individual Controls Yes Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes Yes 
Other Exposure Yes Yes Yes Yes Yes Yes 

Adjusted R-squared 0.294 0.408 0.254 0.367 0.322 0.350 

Notes: This table presents the estimated results of the role of NCMS coverage on mitigating the effects of in-utero agri-

cultural fire exposure on parental education investment, using the rural sample. The dependent variable is the logged value of 
education expenses on children. The observation is at the county-cohort level, with each cohort defined by its birth month. 
Individual controls include gender, age, father’s education and age, mother’s education and age, family income, family size, 

and number of siblings. Meteorological controls include dew point, sea level pressure, temperature, wind speed, and rainfall. 
All weather controls are constructed by averaging the weather conditions during different trimesters. Other exposures include 

controls on whether the individual is exposed to electricity, tap water, road, railway, and natural gas before age 5. Standard 
error is clustered at the county level. * denotes significance at the 10% level. ** denotes significance at the 5% level. *** de-

notes significance at the 1% level.  
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Table A16 The Effects of Early Exposure to NCMS on Early-life Outcomes 

 (1) (2) (3) (4) (5) (6) 

Dep. Var.   Illness at Age 1 Gestation Month Birth Weight 

Diff. Upwind-Downwind Trimester 1 0.157 0.666** -0.510** -0.361* -0.226 -0.967 

 (0.209) (0.266) (0.228) (0.194) (0.617) (0.641) 
Diff. Upwind-Downwind Trimester 2 0.289 0.267 -0.299 -0.273 0.247 -0.099 

 (0.344) (0.341) (0.245) (0.201) (0.646) (0.776) 

Diff. Upwind-Downwind Trimester 3 0.572*** 0.302 -0.122 -0.372* -0.059 -0.284 
 (0.199) (0.208) (0.332) (0.201) (0.628) (0.632) 
       

Observations 963 1,087 1,089 1,246 1,103 1,262 

Sample Exposure 
Non- 

Exposure 
Exposure 

Non- 

Exposure 
Exposure 

Non- 

Exposure 
Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes Yes 

Individual Controls Yes Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes Yes 
Other Exposure Yes Yes Yes Yes Yes Yes 

Adjusted R-squared 0.173 0.175 0.225 0.249 0.112 0.116 

Notes: This table presents the estimated results of the role of NCMS coverage on mitigating the effects of in-utero agricultural fire 

exposure on early-life outcomes, using the rural sample. In columns (1) and (2), the dependent variable is the number of illnesses at age 
1. In columns (3) and (4), the dependent variable is the length of the gestation period, measured in months. In columns (5) and (6), the 
dependent variable is the individual’s birth weight, measured in 500 grams. The observation is at the county-cohort level, with each co-

hort defined by its birth month. Individual controls include gender, age, father’s education and age, mother’s education and age, family 
income, family size, and number of siblings. Meteorological controls include dew point, sea level pressure, temperature, wind  speed, 

and rainfall. All weather controls are constructed by averaging the weather conditions during different trimesters. Other exposures in-
clude controls on whether the individual is exposed to electricity, tap water, road, railway, and natural gas before age 5. Standard error is 
clustered at the county level. * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance 

at the 1% level.  
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Additional Figures 

 

Figure A1 The Geographic Distribution of NCMS Rollout Timing  
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Figure A2 An Illustration on Determining the Upwind Region 
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Figure A3 Robustness: Altering the Definition of Upwind Direction 

Notes: This figure presents the estimated robustness results of altering the definition of upwind direction. Our baseline 
results adopt a definition of 45 degrees, and we check for the robustness of our results by using 30, 60, and 90 degrees. The 

figure is comprised of 4 subplots. The upper left panel depicts the corresponding effects on the unhealthiness index, the up-
per right panel depicts the effects on the standardized word test score, the lower left panel depicts the effects on the posi tive 
non-cognitive performance, and the lower right panel depicts the effects on the negative non-cognitive performance. We fo-

cus on the sample of rural male adolescents. Point estimates and the corresponding 95% confidence intervals are jointly pre-

sented.  
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Figure A4 Robustness: Different Choices of Potential Yield Coverage 

Notes: This figure presents the estimated robustness results of changing the coverage radii of agricultural potential 
yield. Our baseline results calculate the upwind/downwind potential yield covering the entire county, and we use potential 

yield grids with radii of 100 KM, 70 KM, 50 KM, and 30 KM to the county center to test the robustness of the results. The 
figure is comprised of 4 subplots. The upper left panel depicts the corresponding effects on the unhealthiness index, the up-
per right panel depicts the effects on the standardized word test score, the lower left panel depicts the effects on the positive 

non-cognitive performance, and the lower right panel depicts the effects on the negative non-cognitive performance. We fo-
cus on the sample of rural male adolescents. Point estimates and the corresponding 95% confidence intervals are jointly pre-

sented.  
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Panel A: Unhealthiness Index 

 

Panel B: Standardized Word Test Score 

 

Panel C: Positive Non-cognitive Performance 

 

Panel D: Negative Non-cognitive Performance 
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Figure A5 Robustness: The Distribution of Placebo Coefficients 

Notes: This figure presents the distribution of placebo coefficients on four of our main outcome variables, focusing on 
the effects of fire exposure during the first and third trimesters. In Panel A, we plot the distribution of coefficients from re-

gressing the unhealthiness index on placebo upwind/downwind potential yield. Whereas in Panels B, C, and D, the depend-
ent variables are the standardized word test score, the positive non-cognitive performance, and the negative non-cognitive 

performance. The sample is comprised of rural male adolescents.  
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Appendix B: Additional Results on the Urban Sample 

 

Table B1 The Effects of Agricultural Fires on Adolescents' Health (Urban Sample) 

 (1) (2) (3) (4) (5) 

Dep. Var. Unhealthiness Index 

Diff. Upwind-Downwind Trimester 1 -0.344 -0.305 -0.355 -0.170 -0.929 
 (0.347) (0.362) (0.409) (0.709) (0.576) 

Diff. Upwind-Downwind Trimester 2 -0.0521 -0.0341 -0.0870 0.0452 -0.435 
 (0.356) (0.363) (0.387) (0.782) (0.681) 

Diff. Upwind-Downwind Trimester 3 0.264 0.255 0.141 0.0504 0.290 
 (0.329) (0.336) (0.375) (0.688) (0.676) 
      

Observations 1,837 1,837 1,834 1,096 945 
Sample Full Full Full Boy Girl 

Birth Year FE Yes Yes No No No 

Birth Month FE Yes Yes No No No 
Birth Year by Birth Month FE No No Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes Yes 
Individual Controls Yes Yes Yes Yes Yes 
Weather Controls No Yes Yes Yes Yes 

Dep. Var. SD 1.638 1.638 1.638 1.638 1.638 
Adjusted R-squared 0.440 0.441 0.440 0.432 0.449 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on adolescent health, 
using the urban sample. The dependent variable is a normalized health index with a greater value representing worse health 
conditions. The observation is at the county-cohort level, with each cohort defined by its birth month. Individual controls in-

clude gender, age, father’s education and age, mother’s education and age, family income, family size, and number of sib-
lings. Meteorological controls include dew point, sea level pressure, temperature, wind speed, and rainfall. All weather con-
trols are constructed by averaging the weather conditions during different trimesters. Standard error is clustered at the county 

level. * denotes significance at the 10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% 

level.  
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Table B2 The Effects of Agricultural Fires on Cognitive Test Scores (Urban Sample) 

 (1) (2) (3) (4) (5) (6) 

Dep. Var. Standardized Word Test Score Standardized Math Test Score 

Diff. Upwind-Downwind Trimester 1 -0.417* -0.473 -0.298 0.00588 0.0688 0.0799 

 (0.246) (0.711) (0.274) (0.248) (0.520) (0.326) 
Diff. Upwind-Downwind Trimester 2 -0.488 -0.599 -0.509 -0.491 -0.943 -0.222 

 (0.309) (0.812) (0.348) (0.310) (0.688) (0.371) 

Diff. Upwind-Downwind Trimester 3 -0.139 -0.0927 0.467 -0.236 -0.113 -0.182 
 (0.237) (0.780) (0.320) (0.254) (0.543) (0.423) 
       

Observations 816 408 368 818 409 369 
Sample Full Boy Girl Full Boy Girl 

Birth Year by Birth Month FE Yes Yes Yes Yes Yes Yes 
County of Birth FE Yes Yes Yes Yes Yes Yes 
Individual Controls Yes Yes Yes Yes Yes Yes 

Weather Controls Yes Yes Yes Yes Yes Yes 
Adjusted R-squared 0.232 0.217 0.228 0.202 0.157 0.232 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on adolescent cogni-
tive ability, using the urban sample. The dependent variables are age-specific standardized word test scores and math test 
scores. The observation is at the county-cohort level, with each cohort defined by its birth month. All regressions include 

both individual and weather controls. Individual controls include gender, age, father’s education and age, mother’s education 
and age, family income, family size, and number of siblings. Meteorological controls include dew point, sea level pressure, 
temperature, wind speed, and rainfall. All weather controls are constructed by averaging the weather conditions during dif-

ferent trimesters. Standard error is clustered at the county level. * denotes significance at the 10% level. ** denotes signifi-

cance at the 5% level. *** denotes significance at the 1% level.  
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Table B3 The Effects of Agricultural Fires on Adulthood Outcomes (Urban Sample) 

 (1) (2) (3) 

Dep. Var.  Education Year 

Diff. Upwind-Downwind Trimester 1 -0.0207 0.0246 0.0219 

 (0.0332) (0.0527) (0.0377) 
Diff. Upwind-Downwind Trimester 2 -0.0116 0.0546 -0.0247 

 (0.0287) (0.0537) (0.0335) 

Diff. Upwind-Downwind Trimester 3 0.00531 0.0493 0.00612 
 (0.0311) (0.0499) (0.0281) 
    

Observations 994 470 472 
Sample Full Boy Girl 

Birth Year by Birth Month FE Yes Yes Yes 
County of Birth FE Yes Yes Yes 
Individual Controls Yes Yes Yes 

Weather Controls Yes Yes Yes 
Adjusted R-squared 0.377 0.367 0.479 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on adulthood out-
comes, using the urban sample. The dependent variable is the number of education years completed, normalized by the indi-
vidual’s age. The observation is at the county-cohort level, with each cohort defined by its birth month. All regressions in-

clude both individual and weather controls. Individual controls include gender, age, father ’s education and age, mother’s 
education and age, family income, family size, and number of siblings. Meteorological controls include dew point, sea level 
pressure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging the weather conditions 

during different trimesters. Standard error is clustered at the county level. * denotes significance at the 10% level. ** de-

notes significance at the 5% level. *** denotes significance at the 1% level.  
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Table B4 The Effects of Agricultural Fires on Health Expenses (Urban Sample) 

 (1) (2) (3) (4) (5) 

Dep. Var. Log Health Expenses 

Diff. Upwind-Downwind Trimester 1 0.008 0.032 -0.049 0.043 0.068 

 (0.008) (0.026) (0.092) (0.104) (0.141) 
Diff. Upwind-Downwind Trimester 2 0.006 0.035 -0.015 -0.034 0.085 

 (0.008) (0.023) (0.080) (0.123) (0.116) 

Diff. Upwind-Downwind Trimester 3 0.008 0.018 -0.050 0.065 0.088 
 (0.008) (0.024) (0.077) (0.131) (0.121) 
      

Observations 1,834 623 1,185 928 885 
Sample Full Low Education High Education Low Income High Income 

Birth Year by Birth Month FE Yes Yes Yes Yes Yes 
County of Birth FE Yes Yes Yes Yes Yes 
Individual Controls Yes Yes Yes Yes Yes 

Weather Controls Yes Yes Yes Yes Yes 
Adjusted R-squared 0.140 0.087 0.175 0.211 0.125 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on families’ health ex-
penses, using the urban sample. The dependent variable is the logged value of health expenses on children. The observation is 
at the county-cohort level, with each cohort defined by its birth month. Individual controls include gender, age, father’s educa-

tion and age, mother’s education and age, family income, family size, and number of siblings. Meteorological controls include 
dew point, sea level pressure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging the 
weather conditions during different trimesters. Standard error is clustered at the county level. * denotes significance at the 

10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% level.  
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Table B5 The Effects of Agricultural Fires on Education Expenses (Urban Sample) 

 (1) (2) (3) (4) (5) 

Dep. Var. Log Education Expenses 

Diff. Upwind-Downwind Trimester 1 -0.030 0.013 -0.043 0.006 -0.024 

 (0.032) (0.075) (0.038) (0.060) (0.048) 
Diff. Upwind-Downwind Trimester 2 -0.023 0.037 -0.037 -0.063 0.040 

 (0.033) (0.067) (0.040) (0.057) (0.044) 

Diff. Upwind-Downwind Trimester 3 -0.008 0.025 -0.019 -0.027 0.021 
 (0.028) (0.072) (0.038) (0.052) (0.041) 
      

Observations 1,662 538 1,092 823 811 
Sample Full Low Education High Education Low Income High Income 

Birth Year by Birth Month FE Yes Yes Yes Yes Yes 
County of Birth FE Yes Yes Yes Yes Yes 
Individual Controls Yes Yes Yes Yes Yes 

Weather Controls No Yes Yes Yes Yes 
Adjusted R-squared 0.402 0.342 0.357 0.368 0.336 

Notes: This table presents the estimated results of the effects of in-utero agricultural fire exposure on families’ education 
expenses, using the urban sample. The dependent variable is the logged value of education expenses on children. The observa-
tion is at the county-cohort level, with each cohort defined by its birth month. Individual controls include gender, age, father’s 

education and age, mother’s education and age, family income, family size, and number of siblings. Meteorological controls 
include dew point, sea level pressure, temperature, wind speed, and rainfall. All weather controls are constructed by averaging 
the weather conditions during different trimesters. Standard error is clustered at the county level. * denotes significance at the 

10% level. ** denotes significance at the 5% level. *** denotes significance at the 1% level.  
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Table B6 The Effects of Early Exposure to NCMS on Adolescent Outcomes (Urban Sample)  

 (1) (2) (3) (4) 

Dep. Var. Unhealthiness Index 

Diff. Upwind-Downwind Trimester 1 -0.618 -0.114 -0.668 -0.213 

 (0.728) (0.526) (0.740) (0.549) 
Diff. Upwind-Downwind Trimester 2 -0.573 0.546 -0.615 0.498 

 (0.566) (0.612) (0.553) (0.607) 

Diff. Upwind-Downwind Trimester 3 -0.229 0.329 -0.273 0.286 
 (0.735) (0.478) (0.734) (0.492) 
     

Observations 828 985 828 985 
Sample Exposure to 

NCMS 

Non-Exposure to 

NCMS 

Exposure to 

NCMS 

Non-Exposure to 

NCMS 
Birth Year by Birth Month FE Yes Yes Yes Yes 

County of Birth FE Yes Yes Yes Yes 

Individual Controls Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes 
Other Exposure No No Yes Yes 

Adjusted R-squared 0.321 0.448 0.321 0.449 

Notes: This table presents the estimated results of the role of NCMS coverage on mitigating the effects of in-utero agri-

cultural fire exposure on adolescent health, using the urban sample. The dependent variable is a normalized health index with 
a greater value representing worse health conditions. The observation is at the county-cohort level, with each cohort defined 
by its birth month. Individual controls include gender, age, father’s education and age, mother’s education and age, family 

income, family size, and number of siblings. Meteorological controls include dew point, sea level pressure, temperature, wind 
speed, and rainfall. All weather controls are constructed by averaging the weather conditions during different trimesters. Other 

exposures include controls on whether the individual is exposed to electricity, tap water, road, railway, and natural gas before 
age 5. Standard error is clustered at the county level. * denotes significance at the 10% level. ** denotes significance at the 

5% level. *** denotes significance at the 1% level.  
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Figure B1 The Effects of Agricultural Fires on Adolescence Health Components (Urban Sample) 

Notes: This figure visualizes the estimated coefficients of the effects of in-utero agricultural fire exposure during differ-
ent trimesters on adolescent health outcomes, including hospital admission, respiratory disease, and self-rated status, using 

the urban sample. Point estimates and the corresponding 95% confidence intervals are jointly presented.  
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Appendix C: Robustness Checks 

This section briefly discusses the robustness of our baseline estimates. Since our main analyses above 

suggest that the effects are primarily driven by the male sample, we focus on the male sample for our fol-

lowing robustness checks to avoid redundancy.  

C.1 Alternative definition of upwind direction and potential yield coverage 

In the baseline regressions, we use the 45-degree criterion to define upwind agricultural potential yields, 

i.e., whether the angle between the direction of the prevailing wind and the direction of the particular poten-

tial yield grid to the county center is less than 45 degrees. To mitigate concerns that our results are driven by 

the specific choice of wind direction. In Appendix Figure A3, we re-estimate the baseline effects of agricul-

tural fire exposure on health and (non-)cognitive outcomes by changing the definition of upwind direction. 

Specifically, we consider alternative definitions of 30, 60, and 90 degrees. The estimated results in Figure 

A3 suggest that our results are robust to alternative definitions of upwind directions.  

We then examine whether our estimated results are sensitive to different choices of potential yield cov-

erage radii. In our baseline construction, we calculate the upwind/downwind potential yield covering the 

entire county. To avoid potential measurement error and examine the sensitivity of our results to different 

choices of potential yield coverage, we choose alternative radii of 100KM, 70KM, 50KM, and 30KM of 

coverage. Appendix Figure A4 presents the corresponding results for these alternative specifications. Again, 

we find that our estimates are stable across different choices of potential yield coverage.  

C.2 Controlling for additional trends and fixed effects  

Our baseline specification includes birth year by birth month fixed effects to account for the confound-

ing effect of unobserved aggregate time-varying shocks specific to individuals born in different years. How-

ever, these unobserved shocks (e.g., shocks to agricultural productivity, natural disasters, or extreme temper-

atures) may also vary across regions, resulting in the observed association between agricultural fire exposure 

and adolescent outcomes. To address such concerns, in Appendix Table A9, we re-estimate our baseline 

results by additionally including the province-by-birth-year trends and province-by-birth-year fixed effects. 

The inclusion of these additional regional-specific time trends and fixed effects lends us additional credit 

that our estimated effects are not driven by unobserved shocks. Reassuringly, the estimated coefficients of 

fire exposure on health and (non-)cognitive measures remain significant, and the magnitudes are similar to 

our baseline results.  

C.3 Accounting for additional confounders 

Our baseline estimates reveal a significant correlation between in-utero agricultural fire exposure and 

adolescent outcomes. However, the presence of several potential confounders may prevent us from convinc-

ingly establishing the causal relationship. Specifically, there are two main challenges to our identification. 

First, despite air pollution from agricultural fires, the potential yield may correlate with other sources of rural 

pollution. Apart from in situ burning, another use of straw residues is for household fuel, which is associated 

with indoor air pollution. Besides, since higher potential yield is correlated with higher grain output, which 

may be associated with the intensive use of fertilizer and pesticide, leading to potential water pollution. 

Second, the agricultural potential yield may be correlated with other factors that simultaneously affect ado-

lescent outcomes. For example, higher potential yield may be correlated with higher agricultural income, 

which in turn may result in differential access to infrastructure and other facilities.  
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First, to ensure that our results are not driven by pollution from other sources (e.g., indoor air pollution 

or fertilizer-induced water pollution), in Appendix Table A10, we include additional controls on whether 

households use straws as their primary fuel source and the household expenses on fertilizer. The former 

accounts for the potential channel of indoor air pollution, while the latter accounts for the potential con-

founding of water pollution. We find that the inclusion of these additional controls for pollution exposure 

merely affects our estimated effects, suggesting that we can be less concerned that our potential yield 

measures may be correlated with other sources of rural pollution.   

Next, we examine whether our estimated effects are driven by the differential access to infrastructures 

and other facilities. Specifically, we consider facilities that are related to education and health (e.g., number 

of kindergartens, number of primary schools, number of hospitals and pharmacies in the village). We also 

include controls on whether villages have access to electricity, roads, and railways, to serve as proxies for 

Infrastructure construction. The corresponding results are reported in Appendix Table A11. We show that the 

estimated coefficients are stable in both magnitude and significance level after the inclusion of these addi-

tional controls. Taken together, the above exercises suggest that our results are less likely to be driven by 

omitted variables, which again provides support to the validity of our research design that leverages exoge-

nous sources from wind directions for identification.  

C.4 Randomized inference 

As a further validation, we provide the randomized inference to show that our estimated effects are not 

the result of any arbitrary idiosyncratic variations. To do so, we first simulate placebo upwind/downwind 

agricultural potential yield, which are drawn from the same distribution and have the same mean and stand-

ard deviation as the original data. We then follow equation (3) and interact the placebo upwind/downwind 

potential yield with dummies indicating during which trimester the individual is exposed to agricultural fires. 

For each random draw of potential yield, we re-estimate equation (3) and record the corresponding coeffi-

cients. The process is repeated 500 times. As the effect of in-utero agricultural fire exposure on adolescent 

outcomes is primarily driven by exposure during the first and third trimesters, we mainly focus on examining 

the extent to which the placebo coefficients for fire exposure in these two trimesters can replicate our baseline 

estimates. Appendix Figure A5 plots the corresponding distribution of placebo coefficients on four of our 

main outcome variables. We find that the placebo coefficients are centered around zero and are small in 

magnitude, and are far away from the true coefficients. This piece of evidence suggests that our estimated 

effects are plausibly unlikely to be accounted for by arbitrary idiosyncratic variations.  

 


